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Abstract

We study a seat allocation problem in public transportation. Motivated by different

practices in advanced and developing countries, we consider gender-based restrictions

which require no pair of passengers of different genders can be seated next to each

other. We first show that the commonly used procedure suffers from serious handicaps

including welfare losses due to unfilled seats. We then introduce a new mechanism

that avoids all these deficiencies while also satisfying some other desirable properties.

We also show that our proposal is the only mechanism respecting the rankings over

passengers (e.g., booking times) while minimizing unfilled seats. We run simulations

to quantify the gain from replacing the current procedure with our proposal. Finally,

we show that our analysis can be easily applied to the case in which there are no

gender-based restrictions.
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1 Introduction

“In 2015, the United Nations Population Fund commissioned a study on sexual harass-

ment against women on public buses and trains in Sri Lanka. A total of 2,500 women were

surveyed for the study and 90% of them said they had experienced sexual harassment.”1

“According to a survey by Lady Doak College, almost all women respondents faced sexual

harassment on public buses in Maduari, a city in India. In fact, 29% of them said that they

had experienced it more than five occasions.”2

Albeit less significantly, sexual harassment in public buses is also an issue in developed

countries. According to The European Union Agency for Fundamental Rights, up to 55%

of women within the European Union had experienced sexual harassment in public trans-

portation.3

Various actions, including harsher penalties and ladies-only buses, have been taken in

several countries to at least mitigate the harassment problem. While gender-segregated

transportation (GST) seems to be a more definitive solution, it has been criticized from

different angles, including its inefficiencies, economic cost, mobility, and the new restrictive

social norms it entails. For instance, variation in demand can result in inefficient use of GST.

Below is an excerpt from a policy report supported by World Bank:4

“A study of pink buses introduced in Lahore, Pakistan, in 2012 found that the need

for financial subsidies escalated over time because of the low ridership (Daha 2014). More

1https://srilanka.unfpa.org/sites/default/files/pub-pdf/FINAL%20POLICY%20BRIEF%20-%20

ENGLISH 0.pdf
2https://timesofindia.indiatimes.com/city/madurai/sexual-harassment-high-on-buses/art

icleshow/90088285.cms.
3https://fra.europa.eu/sites/default/files/fra uploads/fra-2014-vaw-survey-main-result

s-apr14 en.pdf
4https://www.ifc.org/wps/wcm/connect/c4ce4844-ff6a-4537-b4c4-3ff956d5f3ee/062020+IFC+

Gender+Segregated+Ride+Hailing.pdf?MOD=AJPERES&CVID=naU5q5r.
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common are reports of overcrowding. A commuter in the Indian state of Kerala observed

that, although nearly the same number of men and women travel in buses during non-peak

hours, women are often the ones who end up without a seat.”

The same report argues that GST tends to increase women’s mobility, enhancing their

participation in the labor force and ability to attend school. At the same time, this mode of

transportation is often unsustainable as the economic costs of GST can lead to the suspension

of these services altogether. GST also entails a new restrictive social norm that forces women

to utilize it as, otherwise, harassment is partially deemed as their fault.

A more compromising alternative to GST is gender-based seating (GBS). A male-female

pair cannot be seated next to each other unless they make a reservation together. This

practice has been in use in some countries, including India, Sri Lanka, Japan, and Turkey.5,6

Reservations under GBS are commonly done on a first-come-first-serve basis. That is, by

their login time to the booking application, passengers see the available seats that they can

book depending on their gender. They then reserve the seat of their choice. For instance,

we include two booking screenshots below, one from the Turkish intercity railway, and the

other from the intercity bus transportation in India.

Figure 1 is a screenshot of the Turkish Railway booking system. Accordingly, if a cus-

tomer is male (female) and attempts to reserve a seat whose adjacent has already been taken

by a female (male), the system does not let him (her) go through and gives a warning.7 In

Figure 2, exhibiting the case in India, the system directly shows the seats, shown by unfilled

red squares, that can only be taken by a woman. Notice that the seats next to these have

already been taken by another woman.

An unavoidable implication of the GBS is that some seats might be wasted. However,

5https://globalpressjournal.com/asia/sri lanka/sri-lankan-entrepreneur-develops-lady-s

eat-option-help-women-travel-safely/; https://blog.railyatri.in/why-smart-bus-is-safe-fo
r-female-travelers/

6https://willerexpress.com/en/bus search/tokyo/all/osaka/all/day 21/service safety/; and
https://rayhaber.com/2022/07/tcdd-yht-seyahatlerinde-cinsiyete-gore-koltuk-secimi-karari

-aldi/.
7Note that in Figure 1, some male-female pairs are seated next to next as the system allows for that

once either of them makes a booking for both.

3

https://globalpressjournal.com/asia/sri_lanka/sri-lankan-entrepreneur-develops-lady-seat-option-help-women-travel-safely/
https://globalpressjournal.com/asia/sri_lanka/sri-lankan-entrepreneur-develops-lady-seat-option-help-women-travel-safely/
https://blog.railyatri.in/why-smart-bus-is-safe-for-female-travelers/
https://blog.railyatri.in/why-smart-bus-is-safe-for-female-travelers/
https://willerexpress.com/en/bus_search/tokyo/all/osaka/all/day_21/service_safety/
https://rayhaber.com/2022/07/tcdd-yht-seyahatlerinde-cinsiyete-gore-koltuk-secimi-karari-aldi/
https://rayhaber.com/2022/07/tcdd-yht-seyahatlerinde-cinsiyete-gore-koltuk-secimi-karari-aldi/


Figure 1: A Screenshot from the Turkish Railway Booking System

Figure 2: A Screenshot from the Indian Intercity Bus Booking System

the current first-come-first-serve based seat assignment goes beyond that in the sense that

it admits avoidable waste. To see this, let us consider two pairs of seats. Suppose that the
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first two customers who are female choose a seat in different rows. After their bookings, the

two remaining available seats can only be taken by women. If the rest of the demand only

comes from men, then none of them can be seated, implying two wasted seats. However, all

the seats could have been assigned in an alternative seat assignment (give the seats in either

of the rows to the women) while respecting the gender-based restriction.8 Even this simple

example shows that under the current system, 50% of seats could be wasted while all could

have been assigned. This flaw has caused frustration. For instance, a passenger who cannot

purchase a ticket due to this restriction expressed his complaint on www.sikayetimvar.com.9

“... There are about 30 vacant seats on the train, but I cannot reserve because

there is a woman next to every vacant seat, and the system does not allow me

to reserve one. There cannot be such a system where there is a vacant seat on

the train, but I can’t get it. I have been calling the help center, but nobody helps.

Isn’t it unfair?”

Another frustrated passenger expressed her experience as follows:

“Although there are 20 vacancies when I move to the next stage of online reser-

vation, I cannot find a seat as a woman because there are always men sitting next

to the vacant seats, the system prevents me from choosing a seat.”10

In each of these quoted cases above, the problem is that passengers first attempt to book

a seat whose adjacent is empty, exacerbating the gender-based restrictions. Moreover, this

seat-wasting issue is a concern for both the demand and supply sides as it causes economic

loss. Here is an excerpt from a bus company owner in Sri Lanka:

“Sometimes, the seat next to a ‘lady seat’ has to remain empty if there is no

8We could face fairness issues even when more than two female customers follow the two male customers.
9www.sikayetimvar.com is a website where people can express their complaints about the companies and

brands in Turkey. See https://www.sikayetvar.com/tcdd/tcdd-hizli-tren-rezervasyon-sorunu.
10See https://www.sikayetvar.com/tcdd/erkek.
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female passenger who selects it, and that’s a loss of income for the bus company

owners.”11

Of course, eliminating GBS is always an option to solve the seat-wasting issue, but women

benefit from them as they feel secure. Here is an excerpt revealing it.

“She [Revathy] says she’s been able to avoid inappropriate touching from male

passengers thanks to BusSeat.lk, an online bus-booking service that gives female

riders the option to book a “lady seat” on long-distance trips. With this feature,

Revathy and other female travelers can make sure that the seat or seats next to

them are only occupied by women, at no extra cost.”12

Besides the avoidable seat-waste problem of the current system, it has some other severe

handicaps on fairness, efficiency, and strategic grounds, as formally shown later. Therefore,

the optimal seat allocation mechanism under this restriction is a worthy research avenue. To

this end, for the first time in the literature, we formulate a seat assignment problem under

the gender-based restriction that no pair of passengers of different genders can be seated next

to each other. More specifically, we consider a problem with a set of seats to be allocated to

passengers. Seats are grouped in rows, each including either two or three seats.13 Passengers

have preferences over the seats and are prioritized based on their booking time, where the

earlier reservation entails a higher priority. Each passenger is either male or female, and no

pair of male-female passengers can be seated in adjacent seats.

A critical aspect of the modeling is that passengers’ welfare is affected by the others’

assignments. Namely, we assume that passengers always prefer having more empty seats in

their assigned rows, and only when it is the same for two separate seats, they prefer the

matching assigning their favorite seat among them.

11https://globalpressjournal.com/asia/sri lanka/sri-lankan-entrepreneur-develops-lady-s

eat-option-help-women-travel-safely/
12https://globalpressjournal.com/asia/sri lanka/sri-lankan-entrepreneur-develops-lady-s

eat-option-help-women-travel-safely/
13We choose this setting to cover the seating schemes in various public transportation.
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We introduce a stability notion ensuring that (i) no unseated passenger can be seated

without taking away the assigned seat of some higher priority passenger, and (ii) no seated

passenger can propose an alternative seat assignment under which s/he is better off without

harming anyone with a higher priority and the seated passengers remain the same. The first

condition guarantees that passengers should be able to book so long as no higher priority

passenger must be unseated for it to be possible. In other words, it advocates that passengers’

inability to book should not be due to the assigned seats for earlier bookings. The second

condition, on the other hand, ensures that those with earlier booking times are favorably

treated in the distribution of seats. In a nutshell, our stability condition eliminates the waste

(by assigning as many passengers as possible) and controls the externalities caused by the

lower priority passengers’ assignments on the higher priority passengers’ assignments.

We refer to the aforementioned first-come-first-serve based booking as “Myopic Serial

Dictatorship” (MSD). We have already discussed that MSD yields avoidable waste. Be-

sides, MSD is not stable, strategy-proof, or efficient.

Given the serious deficiencies of MSD, we next introduce a mechanism called “Adaptive

Serial Dictatorship” (ASD). In ASD, passengers are assigned their favorite seat from a

constraint set one by one in order of their booking time. The novel aspect here is the

constraint set each passenger encounters. ASD dynamically constructs it depending on the

previous seat assignments. We show that ASD is stable, efficient, and strategy-proof. It is

not maximal in the sense that one can improve ASD in terms of the number of assigned seats.

Nonetheless, in contrast to MSD, ASD cannot be improvable on this basis by another stable

mechanism. We indeed show that it is the only stable mechanism, automatically implying

it. We also quantify the cost of stability in terms of waste and find that stability causes at

most one unfilled seat that could have been taken otherwise. In any problem, a maximal

matching can assign at most one more seat than the ASD’s outcome. This quantification

matters for the supply side as they might be concerned with the economic cost of stability,

which is shown not to be significant. Moreover, under ASD, no passenger would prefer to
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book later. Hence, it gives passengers the incentive to make their reservations earlier.

While gender-based seating is in charge in some countries, as discussed above, it is still

common to have a gender-free booking. Examples of such are abundant, but a drastic one is

that Southwest Airlines does not assign seats a priori. Instead, passengers select their seats

after entering the plane without any restriction. Fortunately, we can easily adapt our model

and the mechanisms to the restriction-free case. In terms of results, while MSD becomes

maximal, its other negative properties above still hold. ASD, on the other hand, maintains

all its positive properties above, and it becomes maximal.

Although our theoretical results show MSD performs superior to ASD in all dimensions

we consider, they do not quantify the possible gains that can be achieved from replacing

ASD with MSD. We use simulations to measure the gain from replacing MSD with ASD

regarding the number of assigned passengers and elimination of stability violations.

In Section 6, we extensively elaborate on the practical implementation of ASD and

some model extensions, including couples and weak preferences. Let us emphasize that

the applicability of the theoretical framework is not limited to the seat allocation problem.

For instance, during the COVID-19 pandemic, in order to maintain social distancing, many

airlines blocked the middle seat in planes with 3+3 seating configurations.14 Moreover,

airlines were considering implementing vaccination passports.15 Our model can be applied to

allocate seats under vaccination passport restrictions where a pair of unvaccinated passengers

cannot be seated next to each other.

14See https://www.cnn.com/2021/04/14/health/airplane-seating-covid-risk-cdc-study-
wellness/index.html, https://news.delta.com/delta-extends-middle-seat-blocking-through-april-2021-only-
us-airline-continue-providing-more-space, https://www.forbes.com/sites/advisor/2020/12/07/master-list-
of-us-airline-seating-and-mask-covid-19-policies/?sh=4aee98f11bb4.

15See https://www.nbcnews.com/business/travel/next-frontier-air-travel-digital-passports-proof-
vaccination-n1261338.
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2 Related Literature

Matching theory has been applied to many real-life markets, including school choice

(Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2009;

Kesten, 2010), organ exchange (Roth et al., 2004; Ergin et al., 2017), refugee resettlement

(Trapp et al., 2020), and cadet-branch matching (Sönmez and Switzer, 2012). To the best of

our knowledge, this paper is one of the first applications of matching theory to the seat allo-

cation problem in public transportation. While there is no closely related paper, Our model

exhibits externalities,16 hence, it is generally related to the matching with externalities liter-

ature. Sasaki and Toda (1996) define a stability notion where the blocking agents consider

all possible reactions from others. They show a stable matching always exists whenever

agents consider the worst-case scenarios. Fisher and Hafalir (2016) consider a one-to-one

matching problem where agents ignore the externalities caused by their actions. They find

some conditions under which a stable matching always exists. Hafalir (2008) formulates a

marriage problem with endogenous beliefs as to the others’ reactions to a blocking pair. He

comes up with a particular belief formation with which the existence of a stable matching is

guaranteed. Bando (2012) consider a many-to-one matching setting where only the firm pref-

erences exhibit externalities and introduce a stability notion eliminating further deviations

within a blocking coalition. The author identifies some conditions ensuring the existence of a

stable matching. In the same setting, Bando (2014) introduces a deferred-acceptance-based

mechanism to find a stable matching.

Pycia and Yenmez (2022) extend the classical substitutes condition to a two-sided match-

ing with externalities setup and obtain it as a sufficient and necessary (in the maximal domain

sense) condition for the existence of a stable matching.

The key conditions for the existence of a stable matching in Pycia and Yenmez (2022),

Bando (2012), and Fisher and Hafalir (2016) do not hold in our setting (see Footnote 23).

However, we still obtain existence because of our stability definition. Their stability concept

16Passengers’ welfare is affected by the others’ seat assignments.
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is an equilibrium notion, eliminating any beneficial reassignments. On the other hand, ours

is a fairness concept ruling out any reassignment proposal by an agent benefiting herself

while not hurting anyone with a higher priority than the former as long as any avoidable

seat wasting is addressed.

In a general framework covering both transferable and non-transferable utility cases,

Rostek and Yoder (2020) consider agents’ matching through contracts. They introduce

a complementarity condition ensuring that a selected contract is never rejected after new

contracts become available. Under this condition, Rostek and Yoder (2020) obtain that a

stable matching always uniquely exits. We also obtain the uniqueness of stable matching,

however, their condition does not hold in our setup.17 Echenique and Yenmez (2007) consider

a college assignment problem where students are interested in not only the colleges they are

assigned to but also their peers at their colleges. They propose a fixed-point algorithm to

find a core assignment whenever it exists. In a coalition formation setting, Pycia (2012)

allows for peer effect and complementarities and identifies a condition to guarantee a core

assignment exists.

In addition to externalities, the other key feature of our model is the gender-based con-

straint over assignments. There is an extensive literature on matching with constraints.

Kamada and Kojima (2015) consider a two-sided matching problem where hospitals are par-

titioned into regions, and regions have caps to restrict the number of doctors assigned to

these regions. In the same setup, Kamada and Kojima (2016) address a more general class

of constraints restricting the number of assigned doctors at each hospital depending on those

at the other hospitals. Note that this class contains the constraints in Kamada and Kojima

(2015). They both introduce stability notions and pursue mechanism designs. Note that

none of these constraint sets include ours, as genders matter to ours. On the other hand,

Kamada and Kojima (2020) consider a class of constraints restricting the group of doctors

each hospital can be assigned a priori. While the doctors’ identities play a role here, the

17For instance, whenever only one available seat is left, a passenger chooses it. However, she may very
well not select it whenever there are other available seats as well.
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constraints are hospital specific. This is not the case in our setting as the constraint on

each seat (hospital with a unit capacity) depends on the gender of the passenger seated at

its adjacent. Kamada and Kojima (2020) characterize the subclass of their constraint set

under which a doctor-optimal stable matching exists. Apart from the differences between

the constraint classes covered in these papers and ours, none of them exhibit externalities.

There is a body of literature on the seat allocation problem but from a completely

different perspective from ours. This literature mainly studies how to increase revenue from

seat sales. Yuan and Nie (2020) investigate how seat-grouping in trains should be done based

on consumer behavior to increase revenue. Sawaki (1989) considers a price discrimination

model and finds the optimal number of seats that should be sold for a low fare to maximize

the expected revenue. Freisleben and Gleichmann (1993) study overbooking predictions to

decrease the empty seats in flights.

The last paper we want to touch on is Kominers and Sönmez (2016). They introduce

a new class of matching problems, capturing the airline-seat upgrade as its application.

This problem is entirely different from ours. Instead of considering seat assignments, it

addresses the means (cash payment, elite status, or miles) of seat-class upgrade and shows

that Kominers and Sönmez (2016)’s model can be applied to assigning agents’ upgrade

requests to these means.

3 Model

In this section, we first introduce the seat allocation problem. Then, we provide the

axioms used in our analysis.

3.1 Seat Allocation Problem

Let (N,S,B,�) be a seat-allocation problem described below.

• N and S are the non-empty sets of agents (passengers) and seats, respectively.
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• Each agent is either male or female.18 Let Nm and N f be the sets of male and female

agents, respectively.

• � is the priority ordering over the agents such that the earlier an agent makes a

reservation, the higher priority s/he has. We write i � j if agent i has a higher priority

than agent j.

• Each agent i has a strict ranking Bi over S. Let B = (Bi)i∈N be the ranking profile.

Let N = {i1, .., in} be the enumeration of the agents such that for each k < k′, ik � ik′ .
19

Let U(ik) = {ik′ : k′ < k}, that is, the set of agents who come earlier than ik in the ordering.

Seats are grouped in rows consisting of either 2 or 3 seats.20 Let r ≥ 1 be the total number of

rows. We write σs for the type of seat s. In the case of 2-seat rows, σs ∈ {1, .., r} × {W,A};

and otherwise, σs ∈ {1, .., r} × {W,M,A}. Its first and second components denote the row

and side of seat s where W , M , A stand for window, middle, and aisle sides, respectively.

Notice that every seat has a unique type.

We say that a seat is adjacent of another if they are in the same row and next to each

other. For instance, in the case of 2-seat rows, seats in the same row are adjacent to each

other. In the case of 3-seat rows, each seat-pair in a row except the window-aisle one is

adjacent to each other. Let τs be the seats that are in the same row as seat s, including seat

s. Note that |τs| gives us the number of seats each row contains.

Regarding the agents’ seat rankings, we assume that in the case of 3-seat rows, each

agent ranks the middle seat below the two other seats in the same row.

Assumption 1. In the case of 3-seat rows, for each agent i and pair of seats s, s′ ∈ τs′

where σs′ = (r,M), sBi s
′.

18These types may differ in other applications.
19In the rest of the paper, we use this ordering unless otherwise stated.
20It is possible to extend our analysis to capture more than 3 seats in a row. However, since different seat-

ing possibilities need to be considered, the cost of such an extension will be having more complex algorithms.
Moreover, our modeling choice can cover almost all applications of gender-based seating restrictions.
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Note that this assumption allows agents to prefer the aisle side in some rows but the

window side in others. We need Assumption 1 for ASD to satisfy the gender-based restriction

in the case of 3-seat rows (see Footnote 37 for details). That is, all our results related to

case with 2-seat rows hold without Assumption 1. A matching µ is an assignment of seats

to agents such that each agent receives at most one seat, and no seat is assigned to more

than one agent. For any k ∈ N ∪ S, we write µk for the assignment of k under µ. We

write µk = ∅ if agent (seat) k does not receive a seat (is not assigned to an agent). Let

µS = {i ∈ N : µi 6= ∅}. Under the gender-based seating restriction, a matching µ is

feasible if there do not exist i ∈ Nm and j ∈ N f such that µi and µj are adjacent seats.

When there is no gender-based seating restriction, any matching is feasible. In the rest of

the paper, we only consider feasible matchings; for ease of exposition, we refer to them as

matching.

An agent’s well-being at a matching depends not only on his seat assignment per se,

but also the availability statuses of the other seats in the same row. In other words, the

problem exhibits externalities. Hence, agents’ ordering over the seats do not fully specify

their preferences over matchings. Here, we assume a particular class of externalities, where

each agent always prefers having the other seats in his assigned row be empty. Section 6

will consider general externalities and how the analysis could be carried out. But, in the

benchmark model, we have the following suppositions regarding the preferences.

Assumption 2. An agent i prefers matching µ to ν if either

(i) µi ∈ S and νi = ∅, or

(ii) µi, νi ∈ S and |{s′′ ∈ τµi : µs′′ = ∅}| > |{s′′ ∈ τνi : νs′′ = ∅}|, or

(iii) µi, νi ∈ S; |{s′′ ∈ τµi : µs′′ = ∅}| = |{s′′ ∈ τνi : νs′′ = ∅}|; and at least one adjacent seat

of µi is empty while none of the adjacent seats of νi are empty, or

(iv) µi, νi ∈ S and none of the first three cases holds and µi Bi νi.
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In other words, the first condition assures that each agent always prefers receiving a

seat. The second condition says that each agent always prefers having more empty seats

in his assigned row. In the case of the same number of empty seats in his row, he prefers

having his adjacent seats empty—Condition (iii).21 If none of these holds, only then do his

preferences come from his ranking over the seats. Note that we do not impose any preferential

supposition over pairs of matchings where an agent receives the same middle seat in both

cases, but a different adjacent seat is empty in each case. Agents can be indifferent or have

strict preferences between such two matchings.22 For the 2-seat row case, Assumption (iii)

is void.23

Let Ri denote the agent i’s preferences over matchings. We write Pi for its strict part.

Two notes are in order: (i) each Bi induces different preferences, and (ii) agents do not have

preferences over the other agents, implying that they are all indifferent between matchings

that differ in terms of the identities in their rows. In the rest of the paper, we fix all the

primitives except the agents’ ranking over the seats and denote the problem by B.

3.2 Axioms

Next, we define the axioms used in our analysis. We start with our stability notion.

21To see this case, consider a 3-seat row with two agents, say i, j. Let us consider two seating arrangements:
(1) Agents i and j are seated at the window and aisle sides, respectively; and (2) Agents i and j are seated
at the window and middle sides, respectively. In both cases, only one seat is left empty. However, both
agents prefer the first arrangement as their adjacent seats are empty.

22This case does not matter in our solution, as, in line with Assumption 1, it always leaves the middle
seats empty to the extent possible.

23 Pycia and Yenmez (2022) introduce a monotone externality condition imposing that an agent never
accepts a previously rejected alternative after the others have an at least weakly better alternative. This
condition proves to be key for their whole analysis as well as the existence of a stable matching. This
condition fails to hold in our setting. To see this, let N = {i1, i2}, S = {s1, s2, s3, s4}, τs1 = {s1, s2} and
τs3 = {s3, s4}. Suppose that both agents’ preferences follow s1, s3, s2, s4. Consider µ and µ′ where µi2 = ∅
and µ′i2 = s2. From {s1, s3, s4}, agent i1 chooses s1 given µ (that is, whenever agent i2 is unseated), whereas
she selects s3 under µ′. Thus, she starts choosing the rejected s3 after i2 has a better alternative, violating
the monotone externality condition. Bando (2012) proposes a similar condition, called positive externality,
and obtains the existence of a stable matching under it. This condition says that a firm is better off whenever
other firms hire new workers. From the example above, we see that i1 would receive the best assignment for
herself whenever i2 remains unassigned, violating positive externality. Fisher and Hafalir (2016) consider a
one-to-one matching problem with cardinal utilities where externalities do not matter a lot. While we do
not have cardinal payoffs, the assignments of the others easily change the selected seat of an agent. Hence
it does not hold in the current problem.
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Definition 1. A matching µ is stable if, for each agent ik, (a) whenever µik = ∅, there is

no matching µ′ where µ′ik 6= ∅ and U(ik)∩ µS ⊆ U(ik)∩ µ′S, and (b) whenever µik 6= ∅, there

is no matching µ′ where µ′S = µS, µ′ Pik µ, and for each j ∈ U(ik), µ′ Rj µ.

Our stability notion is different from its usual definition in standard object assignment

problems because of the externalities in the seat allocation problem and targeting the elim-

ination of waste. Condition (a) ensures that no seat is wasted (see Remark 1 below for

details), and no agent is unassigned for the sake of a lower priority agent. Condition (b), on

the other hand, imposes that no agent can be better off without harming a higher priority

one or causing someone to be unseated.

Remark 1. The stability of a matching µ implies that for each agent i with µi = ∅, there

exists no matching µ′ where µ′S = µS ∪ {i}. No agent can receive a seat without creating

a newly unassigned agent. In other words, no seat is wasted, which is a property known as

non-wastefulness, implied by stability.

Matching µ Pareto dominates µ′ if for each agent i ∈ N , µ Ri µ
′, where this holds

strictly for some agent. Matching µ is efficient if it is not Pareto dominated by another

matching. A matching µ is maximal if there does not exist another matching ν such that

|µS| < |νS|, i.e., no matching allocates more seats than µ.

A mechanism ψ is a systematic way to produce a matching for each problem B. We write

ψ(B) to denote the outcome of ψ at problem B. Mechanism ψ is < stable, efficient, maximal

> if ψ(B) is <stable, efficient, maximal > for each problem B. Mechanism ψ is strategy-

proof if there are no problem B and agent i with ranking B′i such that ψ(B′i,B−i) Pi ψ(B).24

We are now ready to provide the theoretical and computational results. After having

presented them in order, we will discuss some straightforward model generalizations in the

Discussion section.

24B−i is the ranking profile of all the agents except agent i over the seats, i.e., B−i = (Bj)j 6=i.
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4 Results

In what follows, we provide the results in two sections: Restricted and Unrestricted

cases. In the former, no pair of agents of different genders can be seated next to each other.

We impose it as a feasibility requirement over matchings and only consider those satisfying

it. In the unrestricted case, however, each agent can be seated next to anyone irrespective of

gender. Hence, we do not have any feasibility requirements over matchings. The following

result holds for both restricted and unrestricted cases.25

Proposition 1. Let µ be a stable matching in problem B. Then, µ is efficient, i.e., stability

implies efficiency.

4.1 Restricted Case

In this section, we assume that no pair of agents of different genders can be seated next

to each other. We start our analysis by first defining a mechanism, called Myopic Serial

Dictatorship, based on the commonly used first-come-first-serve assignment.

4.1.1 Myopic Serial Dictatorship (MSD)

MSD is based on the serial dictatorship in which each agent selects his most preferred

seat one by one following the ordering. We formally define the MSD mechanism below.

Myopic Serial Dictatorship:

By following the agent-ordering, the MSD mechanism selects its outcome through the

following steps. For k ∈ {1, . . . , n}

Step k. Let us consider the seats in the rows including the highest number of empty

seats. Among these seats, agent ik selects the best ranked one (with respect to .ik) whose

adjacent was not taken by an agent of a different gender in a previous step. If such a seat

does not exist, then ik stays unassigned.

25We provide the proofs of all results, except Proposition 7, in Appendix B.
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MSD terminates by the end of Step n, that is, when all agents are processed. We first

illustrate how MSD works via a simple example.

Example 1. Let Nm = {m1,m2,m3,m4}, N f = {f1}, S = {s1, s2, s3, s4, s5, s6}, τs1 =

{s1, s2}, τs3 = {s3, s4}, τs5 = {s5, s6}, and m1 � m2 � m3 � m4 � f1. Agents’ strict

rankings over S are:

s1 .m1 s2 .m1 s3 .m1 s4 .m1 s5 .m1 s6

s3 .m2 s2 .m2 s1 .m2 s4 .m2 s5 .m2 s6

s3 .m3 s1 .m3 s2 .m3 s4 .m3 s5 .m3 s6

s2 .m4 s1 .m4 s3 .m4 s4 .m4 s5 .m4 s6

s2 .f1 s1 .f1 s3 .f1 s4 .f1 s5 .f1 s6

Let us run MSD in the problem.

Step 1. Since all the seats are empty, agent m1 selects s1, which is the best ranked seat

with respect to .m1.

Step 2. Agent m2 selects s3, which is the best ranked seat with respect to .m2 in the rows

with the highest number of empty seats.

Step 3. Agent m3 selects s5, which is the best ranked seat with respect to .m3 in the rows

with the highest number of empty seats.

Step 4. Since a seat in each row has already been taken in the previous steps, agent m4

selects s2, which is the best ranked seat with respect to .m4.

Step 5. Since each row contains a man, agent f1 cannot be seated.

Hence, MSD selects matching µ where µm1 = s1, µm2 = s3, µm3 = s5, µm4 = s2, and

µf1 = ∅.

Below, we show that MSD fails to satisfy each of the desirable properties we have

discussed.
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Proposition 2. In the restricted case, MSD is not stable, or maximal, or efficient, or

strategy-proof.

Remark 2. MSD assigns seats sequentially, one by one, following the ordering. Even

though agents select the best remaining seats in their turn, the outcome is neither stable nor

efficient. This shows that no mechanism assigning seats sequentially as agents arrive can

admit these properties. Thus, we need a mechanism that first gathers all the agents and then

assigns the seats once and for all. Our mechanism proposal is of this type with the advantage

that agents will at least know whether they receive a seat by their arrival.

Given the negative results presented in Proposition 2, our objective is to introduce a

mechanism satisfying desirable properties to the extent possible. Unfortunately, Proposition

3 shows that, in the restricted case, stability and maximality are incompatible.

Proposition 3. In the restricted case, there does not always exist a stable and maximal

matching.

Proposition 3 implies that there does not exist a stable mechanism that is also maximal.

Given the incompatibility between stability and maximality, we focus on the maximality

among stable matchings. We say that a matching µ is constrained maximal if there is

no stable matching ν with |µS| < |νS|. A mechanism is constrained maximal if it always

produces a constrained maximal matching.

Let us revisit the example in the proof of Proposition 2 that shows the lack of maximality

of MSD. There, matching ν is stable and assigns more agents than the MSD outcome,

revealing that MSD is not even constrained maximal.

Proposition 4. In the restricted case, MSD is not constrained maximal.

The reason why MSD performs poorly is due to its inflexibility. It is a greedy algorithm:

Once an agent selects a seat, it becomes permanent. However, because of externalities,

the agent’s well-being depends on later selections, undermining its efficiency and stability.
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Likewise, agents select their seats without considering the restrictions they impose on the

allocation of their adjacent seats, owing to gender-based seating. Because of the greedy

nature of MSD, the problematic seat selections, causing avoidable waste, cannot be fixed in

the mechanism. Thus, to fix all these, we need a mechanism that addresses both externalities

and gender-based restrictions in its dynamics and assigns the best possible seats to the agents

in order of their priorities. We will introduce such a mechanism in the next section.

4.1.2 Adaptive Serial Dictatorship

Given the serious handicaps of MSD, we introduce a new mechanism, which will be

shown to be superior to MSD in many aspects. We call this mechanism Adaptive Serial

Dictatorship and denote it by ASD. For the sake of expositional simplicity, we define ASD

below when there are two seats in each row. In Appendix A, we provide its general definition,

encapsulating both 2-seat and 3-seat cases. The proofs are all given for this general version.

Hence, all the results hold for both cases.

Adaptive Serial Dictatorship

Step 1. We first tentatively determine who will be seated. To this end, by following the

agent-ordering, we apply the following steps one by one for each agent. For k ∈ {1, .., n},

Substep 1.k. Let us consider agent ik. If there is an available seat such that the adjacent

seat is taken by an agent of the same gender as ik, then let ik receive the best one (with

respect to Bik) among such seats. Otherwise, if there is an empty row, then let ik be seated

at his/her favorite seat among those in the empty rows. If none of these hold, then let ik be

unassigned.

This procedure terminates by the end of Substep 1.n.

Let µ0 be the tentative matching attained at the end of Step 1. We exclude all the agents

in N \ µ0
S from the problem, and they become permanently unassigned. Let us displace the

rest from their assignments under µ0, and each seat becomes available.
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Let c be the total number of empty rows under µ0. If c > 0, then we go to Step 2.26

Otherwise, we go to Step 3.

Step 2. We only consider the top c agents in the agent-ordering. We first let i1 pick

his/her favorite available seat. We remove the agent and the selected row. Among the

remaining seats, we repeat the same procedure one by one following the agent-ordering, and

it ends after the selection of ic. We then go to Step 1 in the reduced problem with the

remaining agents and seats.

Step 3. We have the following exhaustive cases.

Case 1: All seats are taken. We go to Step 4.

Case 2: There is at least one row where only one seat is taken. There can be

at most two rows where only one seat is taken. We have the following subcases.

Subcase 2.1: There are two rows where only one seat is taken. By Step 1’s

definition, one of these rows contains a woman, and the other one contains a man. Let us

suppose that the top agent under the ordering is a man. The other case follows from the

symmetric argument. We let the top agent, who is a man, choose his best seat and remove

him along with his row from the problem. We apply Step 4 until the top woman takes her

turn. When it is the top woman’s turn, she selects the best remaining seat in a completely

empty row. We remove her, the selected seat, and its row from the problem. We then go to

Step 4.

Subcase 2.2: Only one row containing one seated agent whose gender is the

same as the top agent. We let the top agent choose her/his best remaining seat and

remove the selected seat and its row from the problem. We then go to Step 4.

Subcase 2.3: Only one row containing one seated agent whose gender is

different from the top agent. Let agent j be the top agent of the same gender as the

agent whose row has an empty seat. We apply Step 4 till agent j. Whenever it is agent j’s

turn, we let him/her choose his/her best seat in a completely empty row. We remove the

26Notice that, if c > 0, then N = µ0
S .
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row and go to Step 4.

Step 4. By considering the remaining seats and unassigned agents, one by one following

the agent-ordering, we do the following. We start with the first agent (with respect to the

agent-ordering) and let him/her choose his/her best available seat. Let us then consider the

second agent. Suppose she is a woman (the other case follows from a symmetric argument).

Let us calculate the total number of empty seats in the rows where a woman has already

been seated. If this number is equal to the number of unseated women, then we let her

choose the best seat in a row where a woman has already been seated. Otherwise,27 she

chooses her best seat in rows where no man has already been seated. We continue in the

same manner until the last agent.

The algorithm terminates by the end of Step 4. The assignments obtained by the above

steps define the outcome of the algorithm. We run ASD in a problem below.

Example 2. We consider the same problem given in Example 1. ASD selects its outcome

through the following steps.

SubStep 1.1. Since all seats are empty, m1 receives s1, which is the best ranked seat

under .m1.

SubStep 1.2. Since s2 is the only seat whose adjacent seat has been already taken by a

man, m2 receives s2.

SubStep 1.3. Since there is no seat with an adjacent seat is taken by a man, m3 receives

s3, which is the best ranked available seat under .m3.

SubStep 1.4. Since s4 is the only empty seat whose adjacent seat has been already taken

by a man, m4 receives s4.

SubStep 1.5. Since there is no seat whose adjacent seat is taken by a woman, f1 receives

s5, which is the best ranked available seat under .f1.

Let µ0 be the tentative matching attained at the end of Step 1. There is no empty row

under µ0. Hence c = 0, and we continue with Step 3.

27This number cannot exceed the number of unseated women.
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Step 3. Since only one row contains one seated agent whose gender is different from the

top agent, we consider Subcase 2.3 and apply Step 4 as follows.

Step 4. Agents m1, m2, m3, and m4 choose s1, s3, s2, and s4, respectively. Agent f1

chooses s5 and the algorithm terminates. Hence, ASD selects matching ν where νm1 = s1,

νm2 = s3, νm3 = s2, νm4 = s4, and νf1 = s5.

In its first step, ASD identifies the maximal set of agents that can be seated by following

the agent-ordering. This step causes ASD not to waste an additional seat beyond what is

caused by stability and gender-based restriction. Agents’ permanent assignments are deter-

mined in its other steps. By taking care of the agents’ preferences, including externalities,

ASD assigns the best possible seats to the agents by respecting their priorities.

Remark 3. Before moving to its allocative and strategic properties, let us first note that

ASD runs in a polynomial time in both agents and seats. If we add one more agent, it

causes at most one additional step to run. On the other hand, adding a new row of seats

entails at most 2 additional steps.

We are now ready to study the properties of ASD. Theorem 1 shows that ASD satisfies

stability, efficiency, and strategy-proofness.

Theorem 1. In the restricted case, ASD is stable, efficient, and strategy-proof.

One can wonder whether there exists another stable mechanism. Theorem 2 shows that

in any problem there exists a unique stable matching, and therefore ASD is the unique

stable mechanism.

Theorem 2. In the restricted case, ASD is the unique stable mechanism.

The following corollary is immediately implied by Proposition 3 and Theorem 2.

Corollary 1. In the restricted case, ASD is not maximal. However, it is constrained max-

imal.
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Fortunately, stability does not cause too many empty seats that otherwise would be

filled: In any problem, a maximal matching can assign at most one more seat than the

ASD’s outcome.

Proposition 5. In the restricted case, let µ′ be a maximal matching at a problem B. Then,

|µ′S| ≤ |ASDS(B)|+ 1.

Recall that the earlier a booking an agent makes, the earlier he comes in the ordering.

Thus, an interesting question is whether agents prefer to make a booking earlier. To address

this question, we start including � in the problem notation and write (B,�) instead of B.

We say that �′ is an improvement over � for agent i if for each j, k ∈ N \ {i}, i � j

implies i �′ j, and j �′ k if and only if j � k. Mechanism ψ respects improvements if

there is no problem (B,�) and �′ such that �′ is an improvement over � for agent i, and

ψ(B,�) Pi ψ(B,�′).

Theorem 3. In the restricted case, ASD respects improvements.

Hence, under ASD, agents are incentivized to book their reservations earlier.

4.2 The Unrestricted Case

In this section, we assume that there is no gender-based restriction in the sense that an

agent can be seated next to any agent independent of their gender. We start our analysis by

first adapting the Myopic Serial Dictatorship to the unrestricted case below.

4.2.1 Myopic Serial Dictatorship (MSD)

When there is no gender-based restriction, we can apply the MSD mechanism defined

in Section 4.1.1 by considering that all agents are of the same gender. For the sake of

completeness, we define the MSD mechanism in the unrestricted case.

Myopic Serial Dictatorship in the Unrestricted Case
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By following the agent-ordering, the MSD mechanism selects its outcome through the

following steps. For k ∈ {1, . . . , n}

Step k. Let us consider the set of rows with the highest number of empty seats. Among

the seats in these rows, agent ik selects the best ranked one (with respect to .ik). If such a

seat does not exist, then ik stays unassigned.

MSD terminates by the end of Step n. We show below that in the unrestricted case,

while MSD becomes maximal, it does not satisfy the other desirable properties.

Proposition 6. In the unrestricted case, MSD is maximal. However, it is not stable,

efficient, or strategy-proof.

Given that MSD does not satisfy most of the desirable properties, we straightforwardly

adapt ASD to the unrestricted case.

4.2.2 Adaptive Serial Dictatorship (ASD)

As explained for MSD, we can apply the ASD mechanism defined in Section 4.1.2 by

supposing that all the agents are of the same gender. For the sake of completeness, we define

the ASD mechanism in the unrestricted case. As the same as before, below defines ASD

for the 2-seat case. Its general definition is given in Appendix A. The result in this section

holds for the general version, capturing both 2-seat and 3-seat rows.

Adaptive Serial Dictatorship in the Unrestricted Case

Step 1. We first tentatively allocate seats among agents. To this end, by following the

agent-ordering, we apply the following steps one by one for each agent. For k ∈ {1, .., n},

SubStep 1.k. Let us consider agent ik. If there is an available seat whose adjacent seat

has already been taken, then let ik receive his/her favorite seat among such seats. Otherwise,

if there is an empty row, then let ik be seated at his/her favorite seat among the ones in the

empty rows. If none of these hold, then let ik be unseated.

This procedure terminates by the end of Substep 1.n. Let µ0 be the matching at the end

of Step 1. We exclude all the agents in N \µ0
S from the problem and let them be permanently
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unassigned.

Let c be the total number of empty rows under µ0. Let us displace the agents from their

assignments under µ0, and each seat becomes available to be assigned. If c > 0, then we go

to Step 2.28 Otherwise, we go to Step 3.

Step 2. We only consider the top c agents in the agent-ordering. We first let i1 pick

his/her favorite seat. We remove the agent and the selected row. Among the remaining seats,

we repeat the same procedure one by one following the agent-ordering, and it ends after the

selection of ic. We then go to Step 1 in the reduced problem, where only the remaining

agents and seats are considered.

Step 3. We have the following exhaustive cases.

Case 1: All seats are taken. We go to Step 4.

Case 2: There is a row with only one seat is taken. No other row contains an

empty seat. We let the top agent choose her/his best remaining seat. We remove the agent

along with the selected row and go to Step 4.

Step 4. In the reduced problem, we let each agent choose his/her best remaining seat

one by one following the agent-ordering.

The algorithm terminates by the end of Step 4. The assignments obtained in the course

of the above steps define the outcome of the algorithm.

Note that ASD in the unrestricted case is equivalent to the restricted case’s ASD when-

ever all the agents are of the same gender. Therefore, all the earlier positive properties of

ASD carry over to the unrestricted case. Moreover, an agent fails to receive a seat only

when all seats are already taken, implying that ASD becomes maximal in the unrestricted

case as well.

Proposition 7. In the unrestricted case, ASD is maximal, stable, efficient, strategy-proof,

and respects improvements. Moreover, it is the unique stable mechanism.

For the sake of brevity, we refer to the related results under the restricted case and skip

28If c > 0, then N = µ0
S .
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the proof of Proposition 7.

5 Simulations

This section uses computer simulations to measure possible gains from replacing the

first-come-first-served based current procedure with ASD. In particular, we calculate the

fractions of agents assigned to a seat under the current procedure and ASD under various

scenarios based on the number of agents, correlation in preferences over seats, and gender

distributions. Moreover, we also calculate the number of instances in which priorities are

violated when there is no restriction on the seating. Here, we take MSD as a proxy for the

current procedure.

We run separate simulations for 2-seat and 3-seat cases. Under both cases, |N | agents29

are ordered according to their booking times, and no two agents book at the same time.

Hence, we have a strict priority order over the agents. Instead of randomly choosing the

gender of each agent with the same probabilities, we consider different distributions in which

the first half of the agents and the second half of the agents have the same probability of

being female and male, respectively. For the first half of the agents, an agent is a female

(male) with probability δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (1 − δ), and for the remaining half of

the agents, an agent is female (male) with probability 1 − δ (δ). Hence, we aim to have a

population with equal shares of females and males.

To construct the preference of each agent i, we calculate her/his utility from being as-

signed to each seat s as follows:

Ui,s = α× Cs + (1− α)×Di,s,

where Cs ∈ (0, 1) represents the common utility received by all individuals from seat s and

Di,s ∈ (0, 1) represents the individual specific utility received by agent i from seat s. Both

29We take |N | as an even number.
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Cs and Di,s are selected from i.i.d. standard uniform distribution. The correlation between

the preferences of the agents is captured by variable α ∈ {0, 0.25, 0.5, 0.75, 1}. The higher

the α is, the more correlated preferences are. The calculated utility values of agents over the

seats are used to construct the ordinal preferences of agents over the seats.

For 2-seat case, we set the number of rows to 50 and the number of seats to 100. We

consider five different cases based on the number of agents, namely 80, 90, 100, 110, and 120.

When the number of agents is less than the number of seats, there is less competition for the

seats, and, in the unrestricted case, every agent can be seated. On the other hand, when the

number of agents is more than the number of seats, the competition is more fierce, and some

agent has to be unassigned. Our theoretical results imply that when the number of agents

is 80 or 90, ASD assigns each agent to a seat. Moreover, ASD will waste at most one seat

for the remaining cases. Our simulations verify these theoretical results. On the other hand,

under MSD, we observe many wasted seats, specifically for a lower level of δ. The MSD

performs poorly when the number of agents is less than the number of seats. This follows

from two key facts: (1) when there are fewer agents than seats, there is less competition

for the seats, and agents are not seated due to the skewed distribution of bookings, and (2)

when there are more agents than seats, we can find enough agents to fill them. We also

observe that α does not affect the ratio of seated agents under MSD to that under ASD.

We present our simulation results for the 2-seat case for α = 0.5 in Figure 3.

For the 3-seat case, we set the number of rows as 40 and the number of seats as 120.

We consider five different cases based on the number of agents, namely 100, 110, 120, 130,

and 140. Our theoretical results imply that for the cases of 100 and 110 agents, ASD can

seat all agents independent of the gender distribution. Moreover, for the remaining cases,

under ASD, there will be at most one unfilled seat. Our simulations verify these theoretical

results. On the other hand, under MSD, we observe many wasted seats, specifically for the

lower level of δ, independent of the number of agents. We also observe that α does not affect

the ratio of seated agents under MSD to that under ASD. We represent our simulation
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Figure 3: Ratio of seated passengers under MSD and ASD (2-seat restricted case)

results for the 3-seat case for α = 0.5 in Figure 4.

Figure 4: Ratio of seated passengers under MSD and ASD (3-seat restricted case)

We also conduct a simulation analysis under the unrestricted case, i.e., females and males

can sit next to each other. Under the unrestricted case, both MSD and ASD do not waste

any seats. That is, either all agents are seated or all seats are allocated to some agents. In
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this unrestricted case, stability implies that no agent would like to swap his/her assignment

with another agent with a lower priority. As shown in Section 4.2, ASD is stable. By using

our simulations, we calculate the fraction of agents who would like to swap their assignment

with a lower priority agent under MSD. We call such a situation as priority violation.

The results under 2-seat and 3-seat cases for different levels of α and the number of agents

are given in Figures 5 and 6, respectively. As the preferences become more correlated, we

observe higher levels of priority violations in all cases. Moreover, we observe higher levels

of priority violations when there are fewer agents than seats. This is due to the fact that,

when preferences are correlated, agents with lower priority are seated in the unfilled rows

since they pick later than the higher priority agents.

Figure 5: Fraction of agents whose priorities violated under MSD (2-seat unrestricted case)
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Figure 6: Fraction of agents whose priorities violated under MSD (3-seat unrestricted case)

6 Extensions and Implementation

The benchmark model assumes a specific class of externalities. However, we could con-

sider a more general class of externalities and extend our analysis so long as agents always

prefer receiving a seat to being unseated. To formalize this general framework, we let agents

have (possibly weak) preferences over matchings. We have the same notions as in the bench-

mark case. Let us next consider a mechanism where its first stage is the same as ASD’s,

which finds the set of agents to be seated in the mechanism. In the second stage, we consider

the set of all matchings where the only seated agents are those found in the previous step.

Then, the first agent in the priority order chooses her best matchings from this set, and all

the other matchings are removed. The second agent then chooses her top matching from

the reduced set, and so on. This mechanism is stable, efficient, strategy-proof, constrained

maximal, and respects improvements.30 A disadvantage of it is its opacity compared to

ASD. This stems from the fact that no specific externality structure is specified, making

30Recall that ASD satisfies these properties under the problem studied in this paper.
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it impossible to be transparent in its seat assignments. Moreover, calculating the set of all

matchings to be considered in the second stage of this mechanism might be computationally

cumbersome. For the setting considered in this paper, ASD provides a solution by deter-

mining the individuals’ assigned seats following the priority ordering and taking the number

of individuals to be seated into account, instead of comparing all possible feasible match-

ings. Hence, we believe that the ASD formulation fits this setting better. Nevertheless,

due to the uniqueness result (Theorem 2), ASD and the mechanism mentioned above are

outcome-equivalent in our setting.

Another natural extension of our framework is to incorporate couples. Even under gender-

based seating restrictions, one may expect that couples can be seated in adjacent seats.

Indeed, this is the practice for the Turkish Railways. Fortunately, our algorithm can easily

be modified to handle the inclusion of couples in the problem. In the first step, as described

above, we treat couples as different agents coming back to back in the ordering (it does not

matter who comes first). We elicit one seat ordering from couples. We then apply the same

Step 1 of the algorithm except that a couple is not seated whenever the man or the woman

in the couple does not receive a seat. Next, they move to the second stage. The second stage

works the same with the exception that whenever the woman (the man) in a couple selects

a seat, she (he) selects their favorite seat with an empty seat next to it. Otherwise, he/she

is assigned as before. In the second stage, if an agent cannot be seated, it is because of the

seat allocation of a couple, i.e., the middle seat is given to an agent of a different gender

from the former. In this case, we can swap the couple’s seats, and the agent can be seated.31

We want to discuss to what extent our analysis extends to the weak preferences domain.

This is worth touching on as agents’ seat rankings may not be strict. We can adapt ASD to

this case as follows. We can first obtain a strict ranking over seats by applying a tie-breaking

rule. Then, with the obtained strict ordering, we can invoke ASD to find a matching. This

matching, however, may not be efficient. To fix this, we can utilize efficiency-improving

31A similar extension can be used for families of size three under the case of the 3-seat configuration.
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cycles, which have been well-studied in the literature (for instance, see Erdil and Ergin

(2008) and Kesten and Ünver (2015)). Cycle construction would take a simple form because

the number of seated agents in an agent’s row at the ASD matching needs to be fixed.

Therefore, we only need to consider agents’ seat rankings in constructing cycles. We can

define stability preserving and efficiency-improving cycles similar to those that have already

been defined and used in the literature. These cycles will also need to take care of feasibility

constraints. Such a mechanism would be feasible, efficient, stable, and constrained maximal.

However, because of weak rankings, there will be multiple stable matchings, implying that

the characterization result (Theorem 2) will no longer hold. Moreover, the mechanism would

be manipulable. It may be a fruitful research direction to further study the weak preference

domain.

Lastly, we want to elaborate on is the practical implementation of ASD. We statically

define the mechanism in the sense that all the agents are pooled, and then it calculates the

outcome. However, this is not practical, as agents make reservations over time and need to

know whether they can reserve a seat right away. Fortunately, ASD can be implemented

dynamically to address this concern. Its first step can be run for each new agent’s arrival,

and the agent can be informed whether she will be seated. Notice that whether or not an

agent is seated only depends on the agents who have arrived earlier. Depending on the trip,

this procedure can be conducted subject to a deadline. Then, the further steps determine

the final seat assignments. The agents can thus be informed about their seats before the

trip. In fact, this implementation is very similar to the seat allocation procedure followed

by airlines. Many airline companies sell tickets to passengers without assigning a specific

seat at the time of purchase. Passengers are usually informed about their seats when they

check-in 24 hours before departure. One might still object ASD’s implementation by arguing

that eliciting passengers’ full-fledged rankings over the seats is impractical. For its remedy,

we can limit the information gathered from passengers. For instance, we can only want

them to report their preferences over the sides (aisle, window). Of course, in this case, our
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mechanism outcome will satisfy the properties subject to the partial information. In fact,

we can utilize ASD to determine who will be seated next to an empty seat without eliciting

the exact preferences of passengers over seats. Then, the passengers who will be seated next

to an empty seat will be given a seat holder card to keep their next seat empty. Finally, we

can let the passengers select their seats one by one following their priorities (i.e., booking

time).

7 Conclusion

Because of harassment, the gender-based seat restriction, which prevents a male-female

couple from being seated next to each other, is in effect in intercity transportation in sev-

eral countries, including Sri Lanka, India, Turkey, and Japan. The first-come-first-served

seat allocation results in various problems, including wasted seats and stability violations.

This paper introduces a mechanism that can be easily and practically implemented. This

mechanism has appealing theoretical properties, including stability, efficiency, and strategy-

proofness. Apart from seat allocation in public transportation, it can be applied to other

allocation problems where two different types of agents cannot be allocated to two specific

objects at the same time. One such problem is hospital bed allocation during a pandemic,

where a patient with a contagious illness cannot be assigned to the same room as other

patients without a contagious illness.32

32Here, we can treat each bed in a room to be adjacent to each other and patients with contagious illness
as male and the rest as female. As a result, we can modify our proposed mechanisms to determine the room
assignment.
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A The General Definitions of ASD

In what follows, we provide the general definition of ASD, covering both two and three-

seat cases.

Adaptive Serial Dictatorship (in the Restricted Case)

Step 1. We first tentatively allocate seats to agents. To this end, by following the

agent-ordering, we apply the following steps one by one for each agent. For k ∈ {1, .., n},

Substep 1.k. Let us consider agent ik. If there is an available seat such that the adjacent

seat is taken by an agent of the same gender as ik while the other adjacent seat (if any) is

not taken by an agent of a different gender, then let ik receive the best one (with respect to

Bik) among such seats. Otherwise, if there is an empty row, then let ik be seated at his/her

favorite seat among those in the empty rows. If neither of these holds, the rows contain

three seats, and there is an empty seat whose adjacent is not taken, then let ik receive the

best one among such seats.33 If none of these hold, then let ik be unseated.

33There can already be at most one such seat. However, for the sake of coherence, we let him choose his
favorite one.
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This procedure terminates by the end of Substep 1.n. By its termination, if |τs| = 3 and

there are two rows where one contains only a single man and the other contains a single

woman, then we displace the one with a lower priority from her/his seat. We place her/him

at the empty non-middle seat in the other agent’s row.34

Let µ0 be the tentative matching attained at the end of Step 1. We exclude all the agents

in N \ µ0
S from the problem and they become permanently unassigned. Let us displace the

rest from their assignments under µ0, and each seat becomes available.

Let c be the total number of empty rows under µ0. If c > 0, then we go to Step 2.35

Otherwise, we go to Step 3.

Step 2. We only consider the top c agents in the ordering. We first let i1 pick his/her

favorite available seat. We remove the agent and the selected row. Among the remaining

seats, we repeat the same procedure one by one following the agent-ordering, and it ends

after the selection of ic. We then go to Step 1 in the reduced problem.

Step 3. We have the following exhaustive cases.

Case 1: All seats are taken. We go to Step 4.

Case 2: There is at least one row where only one seat is taken. There can be

at most two rows where only one seat is taken. We have the following subcases.

Subcase 2.1: There are two rows where only one seat is taken. This case is

possible only if |τs| = 2. By Step 1’s definition, one of these rows contains a woman, and the

other one contains a man. Let us suppose that the top agent under the ordering is a man.

The other case follows from the symmetric argument. We let the top agent, who is a man,

choose his best seat and remove him along with his row from the problem. We apply Step

4 until the top woman takes her turn. She selects the best remaining seat in a completely

empty row. We remove her along with the selected seat and its row from the problem. We

then go to Step 4.

34Note that since each agent chooses the best seat in completely empty rows whenever s/he is seated at
an empty row, the middle-seat in the row is empty. Therefore, the man-woman pair is not seated next to
next.

35If c > 0, then N = µ0
S .
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Subcase 2.2: Only one row containing one seated agent whose gender is the

same as the top agent. We let the top agent choose her/his best remaining seat and

remove the selected seat and its row from the problem. If |τs| = 2, then we go to Step 4.

Otherwise, we go back to Step 1.

Subcase 2.3: Only one row containing one seated agent whose gender is

different from the top agent. Suppose |τs| = 2. Let agent j be the top agent of the

same gender as the agent whose row has an empty seat. We apply Step 4 till agent j.

Whenever it is agent j’s turn, we let him/her choose his/her best seat in a completely empty

row. We remove the row and go to Step 4.

Suppose |τs| = 3. We then calculate the total number of empty seats. If it is equal to 3

(this means that there is another row occupied by two agents of the same gender as the top

agent), then let the top ranked agent choose his/her best seat. We remove him/her with the

selected seat and its row. We then go back to Step 1.36

If it is equal to 2, then we consider the top ranked agent and the two other highest ranked

agents of the same gender as the former (the top agent). We also consider the top ranked

agent of the other gender. Let us write A for the set of these four agents.

The top agent in A chooses his/her favorite seat, and we remove the seat. The next

agent in A selects his/her remaining favorite seat.37 If these two agents are seated in the

same row, then we remove the row. We then apply Step 4 until the third ranked agent in

A. Whenever it is her/his turn, s/he chooses her/his best seat in a completely empty row,

and the other agent in A is seated at her/his best remaining seat in the selected row. We

then remove them along with their selected row and go to Step 4. Otherwise—that is, if the

second ranked agent in A is not seated in the same row as the top agent in A—then we let

the third agent in A choose his/her favorite remaining seat among the empty seats in the

36Notice that, throughout the algorithm, whenever we go back to Step 1, the number of removed agents
is always less than the number of removed seats. Hence, we can repeat this procedure finitely many times.

37Here, we need Assumption 1 as the top agent in A surely selects a non-middle seat, implying that the
other seat in the selected row is available to be chosen by the second agent in A regardless of these agents’
genders.
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rows taken by the first two agents in A. The last agent in A then chooses his/her favorite

remaining seat among these rows. We remove these agents along with their rows and go to

Step 4.

Case 3: |τs| = 3 and there is a row with two seated agents of different gen-

ders. By Step 1, there can be at most one such row. In this case, the top agent selects

his/her favorite seat. The top agent of the other gender selects the best remaining seat in

the selected row by the former. We remove these agents, as well as their selected row, from

the problem and go to Step 4.

Case 4: |τs| = 3 and none of the above cases hold. Let d be the total number of

empty seats. Note that by our construction d ∈ {1, 2}. We consider the following subcases.

Subcase 4.1: d = 1. The row containing the empty seat only includes agents with

the same gender (the other case is already addressed in Case 3). Without loss of generality,

suppose they are both males. Let j1 and j2 be the first and second ranked men. Until j1’s

turn, we apply Step 4. Whenever it is his turn, we let j1 choose his best seat in a completely

empty row. We also let j2 choose his best remaining seat in the row where j1 is seated. We

then remove them along with their row. We then go to Step 4.

Subcase 4.2: d = 2. There is one row containing two men and one row containing two

women. Let us consider the top two agents from the men and women sides and call this set

A. Let the top agent in A select his/her favorite seat and remove it. The next agent in A

selects his/her favorite remaining seat. If these two agents are seated in the same row, then

we remove the row. We then apply Step 4 until the third-ranked agent in A. Whenever it

is her/his turn, we let her/him select the best seat in a completely empty row. Then, the

remaining agent in A is seated at her/his best remaining seat in the selected row by the

former. We then remove them along with their row and go to Step 4. Otherwise, that is, if

the second ranked agent in A is not seated in the same row with the top agent in A, then

the third agent in A chooses his/her favorite remaining seat among the empty seats in the

rows taken by the first two agents in A. The last agent in A then chooses his/her favorite
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remaining seat among these rows. We remove these rows and go to Step 4.

Step 4. In the reduced problem, one by one following the agent-ordering, we do the

following. We start with the first agent (with respect to the agent-ordering) and let him/her

choose his/her best available seat. Let us then consider the second agent. Suppose she is

a woman (the other case follows from a symmetric argument). Let us calculate the total

number of empty seats in the rows where a woman has already been seated. If this number is

equal to the number of unseated women, then we let her choose the best seat in a row where

a woman has already been seated. Otherwise,38 she chooses her best seat in the rows where

no man has already been seated. We continue in the same manner until the last agent.

Adaptive Serial Dictatorship (in the Unrestricted Case)

Step 1. We first tentatively allocate seats among agents. To this end, by following the

agent-ordering, we apply the following steps one by one for each agent. For k ∈ {1, .., n},

SubStep 1.k. Let us consider agent ik. If there is an available seat whose adjacent seat

has been already taken, then let ik receive his/her favorite seat among such seats. Otherwise,

if there is an empty row, then let ik be seated at his/her favorite seat among the ones in the

empty rows. If none of these hold, then let ik be unseated.

This procedure terminates by the end of Substep 1.n. Let µ0 be the matching at the end

of Step 1. We exclude all the agents in N \µ0
S from the problem and let them be permanently

unassigned. Let us displace the rest of the agents from their assignments under µ0, and each

seat becomes available to be assigned.

Let c be the total number of empty rows under µ0. If c > 0, then we go to Step 2.39

Otherwise, we go to Step 3.

Step 2. We only consider the top c agents in the ordering. We first let i1 pick his/her

favorite seat. We remove the agent and the selected row. Among the remaining seats, we

repeat the same procedure one by one following the agent-ordering, and it ends after the

selection of ic. We then go to Step 1 in the reduced problem.

38This number cannot exceed the number of unseated women.
39If c > 0, then N = µ0

S .
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Step 3. We have the following exhaustive cases.

Case 1: All seats are taken. We go to Step 4.

Case 2: There is a row with only one seat is taken. No other row contains an

empty seat. We let the top agent choose her/his best remaining seat. We remove the agent

along with the selected row and go to Step 4.

Case 3: |τs| = 3 and none of the above cases hold. There exists only one row with

two seated agents while all the others are fully taken. Let j1 and j2 be the first and second

ranked agents in the reduced problem. We let j1 select the best remaining seat. Agent j2

selects the best remaining seat in the row selected by j1. We then remove them along with

the selected row and go to Step 4.

Step 4. In the reduced problem, we let each agent choose his/her best remaining seat

one by one following the agent-ordering.

B Proofs

In what follows, all the ASD results’ proofs are provided for its general versions defined

in Appendix A.

Proof of Proposition 1. Assume for a contradiction that µ is not efficient. Let µ′ be a match-

ing such that for each i ∈ N , µ′ Ri µ, where this relation strictly holds for some agent j.

This, as well as the stability of µ, implies that µS = µ′S.

Let W = {i ∈ N : µ′ Pi µ}. By supposition, W 6= ∅. Let ik be the last agent in W (with

respect to the agent-ordering). For each k′ < k, µ′ Rik′
µ, µ′ Pik µ, and µ′S = µS. This,

however, contradicts the stability of µ, which finishes the proof.

Proof of Proposition 2. MSD is neither stable nor efficient LetN = Nm = {m1,m2,m3,m4},

S = {s1, s2, s3, s4}, τs1 = {s1, s2}, τs3 = {s3, s4}. We will be using the same seats with the

same row pattern throughout the proof. Let m1 � m2 � m3 � m4. Agents’ strict rankings
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over S are:

s1 .m1 s2 .m1 s3 .m1 s4

s2 .m2 s1 .m2 s3 .m2 s4

s3 .m3 s1 .m3 s2 .m3 s4

s2 .m4 s1 .m4 s3 .m4 s4

In this problem, MSD selects matching µ such that µm1 = s1, µm2 = s3, µm3 = s2, and

µm4 = s4. Matching µ is not stable, as there exists another matching ν such that νm1 = s1,

νm2 = s2, νm3 = s3, and νm4 = s4, rendering the violation of stability under µ. Moreover, ν

Pareto dominates µ. Therefore, MSD is neither stable nor efficient.

MSD is not maximal: Let Nm = {m1,m2}, N f = {f1}, with m1 � m2 � f1. Agents’

strict rankings over S are:

s1 .m1 s2 .m1 s3 .m1 s4

s2 .m2 s1 .m2 s3 .m2 s4

s3 .f1 s1 .f1 s2 .f1 s4

In this problem, MSD selects matching µ where µm1 = s1, µm2 = s3, and µf1 = ∅.

Matching µ is not maximal because there exists another matching ν such that νm1 = s1,

νm2 = s2, and νf1 = s3. Hence, MSD is not maximal.

MSD is not strategy-proof: Let N = Nm = {m1,m2,m3}, with m1 � m2 � m3.

Agents’ strict rankings over S are:

s1 .m1 s2 .m1 s3 .m1 s4

s2 .m2 s1 .m2 s3 .m2 s4

s1 .m3 s2 .m3 s3 .m3 s4
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In this problem, MSD selects matching µ where µm1 = s1, µm2 = s3, and µm3 = s2.

However, if agent m1 reports s3 .
′
m1
s4 .

′
m1
s1 .

′
m1
s2, then MSD selects matching ν such that

νm1 = s3, νm2 = s2, and νm3 = s1. Note that ν Pm1 µ, showing that agent m1 profitably

manipulates MSD.

Proof of Proposition 3. Consider a problem with Nm = {m1,m2,m3,m4}, N f = {f1}, and

S = {s1, s2, s3, s4}. Let τs1 = {s1, s2} and τs3 = {s3, s4}. Let m1 � m2 � f1 � m3 � m4.

Independent of the agent preferences, m1, m2, and f1 have to be seated in any stable

matching. However, this implies three seats in total are allocated at any stable matching.

On the other hand, we can have all four agents in Nm seated at a matching, showing the

incompatibility between stability and maximality.

The following two lemmas will be critical to the rest of the proofs.

Lemma 1. Let B be a problem. Once ASD reaches Step 4, in the associated reduced problem,

all the agents are seated, and no seat is left empty. In the restricted case, no pair of agents

of different gender is seated in the same row in Step 4. Moreover, in both restricted and

unrestricted cases, in the associated reduced problem, no agent receives a better outcome

without hurting someone else with a higher priority while continuing to assign all the agents.

Proof. By construction, once ASD reaches Step 4, in the reduced problem, there are just

enough empty seats to let the remaining agents receive a seat in a way that no pair of agents

of different genders is to be seated in the same row. One by one following the agent-ordering,

a woman (man) chooses her (his) favorite empty seat in rows where another woman (man)

has been already seated if the total number of empty seats in the rows where a woman

(man) has been already seated is just equal to the total number of unassigned women (men).

Otherwise, s/he chooses the favorite seat in a row where no agent has been already seated.

This construction ensures that no woman (man) selects a seat in a completely empty row

that would prevent some man (in the reduced problem) from being unseated due to the

gender restriction. As agents choose their favorite empty seats one by one subject to the row
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selection condition above, no agent can obtain a better outcome without hurting someone

else with a higher priority while giving a seat to each agent.

Lemma 2. Let B be a problem. Let ASD(B) = µ. Let µ′ be another matching where

µ′S = µS. If, for some ik, µ
′ Pik µ, then there exists some agent j ∈ U(ik) such that µ Pj µ

′.

Proof. Let ψ denote ASD. Let µ′′ be the outcome of Step 1 of ψ. Since µ′S = µS, we have

µ′S = µ′′S. We first claim that the number of empty rows40 under µ′ cannot exceed that

under µ′′. Let ik be an agent such that s/he is seated at an empty row in Substep 1.k of

ψ. Without loss of generality, let us assume that agent ik is a man. Note that whenever it

is agent ik’s turn, there cannot be a row containing two seated agents of different gender.

This is because, by definition, the agent arriving later among these two is to be seated in a

completely empty row (we know that there exists such a row as ik is seated at a completely

empty row). Therefore, the only reason why agent ik is seated at an empty row is that, by his

turn, there is no row containing a man and an empty-seat. If |τs| = 2, then it directly implies

that no row is wasted in ψ, which supports the claim. Let us now assume that |τs| = 3. If

all the rows including the taken seats by the earlier agents are full, or any row containing

an empty seat includes two women, then the only way to give a seat to agent ik is to assign

him a seat in an empty row, implying the claim. Otherwise, there can be a row containing

only one woman (note that by our preferential supposition, the woman takes a non-middle

seat in the row), say j. However, in Substep 1.k of ψ, instead of placing agent ik at woman

j’s row, he is placed at a completely empty row. If there is no other agent after ik (that is,

|N | = k), then agent ik is displaced from his seat and seated at the available non-middle seat

at the j’s row. Therefore, no row is wasted in the sense that it is not possible to keep the

same set of agents seated with fewer rows. Otherwise, if there exists an agent after ik, i.e.,

|N | > k, then s/he would be seated in an empty row whenever ik was originally placed at

woman j’s row. However, as in ψ, whenever ik is seated at an empty row, the later coming

agent is seated either at woman j’s row man ik’s row. Therefore, no row is wasted in ψ.

40A row is empty if no seat is taken in this row.
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This proves the claim.

Let c be the total number of empty rows under µ′′. Then, in the course of Step 2, the top

c agents choose their favorite seats one by one following the agent-ordering. Moreover, these

empty rows are used for the sake of their welfare in that all the other seats in their selected

rows are removed from the problem so that each of them is ultimately seated alone. If any of

these top c agents receives a different seat under µ′, then the agent with the highest priority

among them prefers µ to µ′. Therefore, we suppose all top c agents receive the same seat

under µ and µ′ and they sit alone in the corresponding row. After Step 2, we redo Step 1 in

the reduced problem, and so forth. Because of our claim above, in each Step 1 application,

the number of empty rows is maximal given the set of seated agents in the reduced problem.

All these show that under µ, no agent who is seated alone in a row can be better off without

hurting any agent who comes earlier than himself (herself).

Let us now consider Step 3. The algorithm moves to Step 3 whenever there is no empty

row left. Note that all the agents who received their assignments and were removed earlier

are seated alone in the corresponding rows. If, at the end of Step 1 in the last reduced

problem, no seat is left empty (this corresponds to Case 1 of Step 3), then this means that

all the agents in the reduced problem are to be seated in full rows. We then go to Step

4. By Lemma 1, each agent in the reduced problem in Step 4 is seated in completely filled

rows, and there is no way of making someone among them better off without hurting anyone

coming before in the ordering while keeping the same set of assigned agents as under µ.

Let us next consider Case 2 in Step 3. At the end of the last Step 1 application, if

|τs| = 3, then there can be at most one row containing only one agent, say ik (by Step

1’s definition, it is immediately apparent to see that there cannot be two rows containing

only one agent). Let us assume that ik is a woman. The other case directly follows from

symmetric arguments. By the definition of Step 1 of ψ, this implies that no row contains a

pair of agents of different genders and, moreover, each row containing a woman other than

ik is full.
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We have two cases to consider. First, the top agent, say j, in the reduced problem is

a woman (the top agent can be ik). Note that this case corresponds to Subcase 2.2 in the

definition of ASD. This implies that agent j can be seated alone in a row. Hence, we let

her choose her best seat and remove her, as well as her selected row, from the problem.

We then invoke Step 1 in the reduced problem. Otherwise, agent j, the top agent in the

reduced problem, is a man. Note that this case corresponds to Subcase 2.3 in the definition

of ASD. We then calculate the total number of empty seats. We already have two empty

seats in agent ik’s row. We know that no row containing a woman contains an empty seat.

Therefore, if there is an additional empty seat, then it has to come from a row containing

two men. By the definition of Step 1, at most one row contains two men, and all the other

rows are fully taken. Therefore, the total number of empty seats is either 3 or 2.

Let us assume that it is 3. This means that there is one row containing two men. Recall

that we already have a row containing only woman ik. All the other rows are fully taken.

This case implies that the top agent, who is a man, can be seated alone. Therefore, we let

him choose his best remaining seat in the reduced problem and remove him, as well as his

selected row, from the problem. We then run Step 1 in the reduced problem.

Otherwise, the total number of empty seats is 2. This means that all the rows, except

the one containing ik, are fully taken. In this case, the top agent, who is a man, cannot

be seated alone. However, he can be seated in a pair. As the only unfilled row contains

only one woman, ik, and all the other rows are fully taken, it implies that three men and

one woman can be seated in pairs, and all the others are to be seated in full rows. Let A

be the set with the three top-ranked men and the top-ranked woman (with respect to the

agent-ordering). The first top two agents in A choose their favorite available seats one by

one, starting with the top-ranked agent. If they are seated in the same row, then we run

Step 4 till the third-ranked agent in A, ensuring that all the other agents are to be seated

in full rows. Then, the top third agent in A picks his (her) favorite remaining seat, and the

remaining agent in A picks his (her) favorite remaining seat in the row selected by the third
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agent. Otherwise, if the top-two ranked agents in A are seated at different rows, then the

third-ranked agent picks his (her) favorite seat among the remaining ones in those two rows,

and the fourth agent picks his (her) favorite seat in the remaining row. Hence, these four

agents’ welfare is maximized as much as possible in the reduced problem. We remove them,

along with their selected rows. The algorithm then goes to Step 4. All the remaining agents

must be seated in full rows. All these, as well as Lemma 1, show that under µ, no agent can

be better off without hurting someone coming earlier than himself (herself) while keeping

the same set of assigned agents as under µ.

On the other hand, if |τs| = 2, there can be at most two rows, each containing one agent.

Let us assume that there are two such rows (this case corresponds to Subcase 2.1 in the

definition of ASD). By Step 1’s definition, one of these rows contains a man, and the other

contains a woman. This implies that all the other rows are full, and hence only one man and

one woman can be seated alone. Without loss of generality, assume that the top agent is a

man. The algorithm lets the top agent choose his best seat and removes him along with his

row. Then, Step 4 is applied till the top woman’s turn. Whenever it is her turn, she selects

the best remaining seat in an empty row. We then remove her along with the selected row.

The algorithm then goes to Step 4. All these, as well as Lemma 1, imply the result.

Suppose there is only one row containing only one agent and |τs| = 2. This implies that

all the other rows are full. Let us assume that the row contains a man. The other case

follows from symmetric arguments. As all the other rows are full, it implies that only one

man can be seated alone. If the top agent is a man, then he picks his best seat, and we

remove his row and go to Step 4. Otherwise, the top agent is a woman, say agent j. In this

case, we apply Step 4 till agent j, and whenever it is her turn, she selects her best seat in

a completely empty row. We then remove her selected row and go to Step 4 for the rest of

the assignments. This, as well as Lemma 1, implies the result.

Let us now consider Case 3 in Step 3. Suppose there is a man-woman pair who is seated

in the same row. This case can only happen for |τs| = 3. Note that there cannot be more
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than one such rows. This implies that all the other rows are completely full. Hence, only

one man and one woman can be seated in a pair while all the rest have to be seated in full

rows. The algorithm then selects the top woman and the top man. The top agent among

these chooses his (her) best seat in the reduced problem, and the other is seated at her (his)

favorite seat in the selected row by the former. These two agents along with their row are

removed from the problem. As the rest are to be seated in full rows, the algorithm goes to

Step 4. This, as well as Lemma 1, implies the result.

Let us consider Case 4. The algorithm reaches this case only when |τs| = 3. Suppose

there is only one empty seat. This means that one row contains two women (or men), and

all the other rows are fully taken (note that the case where a row contains a man and a

woman is addressed in Case 3). Suppose that the non-full row contains two women. This

case implies that only two women can be seated in a pair, and all the others have to be

seated in full rows. In ψ, until the first-ranked woman, we apply Step 4. Whenever it is

her turn, she chooses her favorite available seat in a completely empty row. We also let

the second-ranked woman choose her best available seat in that row. We then remove them

along with their row. We then proceed to Step 4 for the rest. Hence, the two top-ranked

women enjoy having an empty seat while all the rest are seated through Step 4. This, as

well as Lemma 1, implies the result.

Let us next consider the case where there are two empty seats in total. This implies that

there are two rows, each containing one empty seat (note that no row contains a pair of

agents of different genders). All the other rows are fully taken. This implies that only two

men and two women can be seated in pairs. In ψ, the two top men and two top women are

selected. Let us write A for the set of these four agents. The rest of this case is the same

as the relevant part in the case above where we consider only one row containing one agent

and the total number of empty seats is 2.

By the definition of Step 1, all these cases are exhaustive—that is, there is no other

case left. Moreover, in each case where the algorithm goes back to Step 1, some row is
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removed. Hence, the algorithm ultimately falls into Step 4. Hence, by Lemma 1, we have

the result.

Proof of Theorem 1. Consider an arbitrary problem B. Let ASD(B) = µ. We first show

that µ is stable. Let us pick an agent ik with µik = ∅. Then, by the definition of Step 1 of

ASD, it is not feasible to place agent ik unless some agent in µS ∩U(ik) loses his seat under

µ and is unassigned. Let us now assume that µik 6= ∅. By Lemma 2, in order to improve

agent ik’s outcome while keeping the same set of assigned agents, some better ranked agent

has to be worse off. Therefore, stability is not violated. All these show that µ is stable. By

Proposition 1, stability implies Pareto efficiency.

Finally, we show that no agent can benefit from misreporting under ASD. First notice,

agents cannot affect the set of seated agents. Moreover, no agent can affect the seat assign-

ment of the earlier agents. All these, as well as Lemma 2, imply that no agent can benefit

by misreporting his preferences under ASD, i.e., ASD is strategy-proof.

Proof of Theorem 2. Consider an arbitrary problem B. Let ASD(B) = µ. By Theorem 1,

µ is stable. Assume for a contradiction that there exists another stable matching µ′.

We first claim that µS \ µ′S = ∅. Assume for a contradiction that µS \ µ′S 6= ∅. Let i be

the best ranked agent in µS \ µ′S according to �. This implies that for each j ∈ U(i), either

j ∈ µS ∩ µ′S or µj = µ′j = ∅. Note that µ′i = ∅ and µi 6= ∅. Therefore, we have a matching

µ where µi 6= ∅ and U(i) ∩ µ′S ⊆ U(i) ∩ µS. This contradicts the stability of µ′. Hence, we

have µS ⊆ µ′S. This, as well as the stability of µ, implies that µS = µ′S.

Suppose that µ 6= µ′. Without loss of generality, let ik be the highest-priority agent who

is not indifferent between matchings, and, without loss of generality, let µ Pik µ
′. Then, µ′

cannot be stable, because of the violation of the stability’s second condition, contradicting

the stability of µ′.

Proof of Proposition 5. First, if each agent receives a seat under ASD, then there is nothing

to prove, as it already implies the maximality of the ASD outcome. Suppose that agent i
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does not receive a seat, implying that s/he is not seated in Step 1 of ASD. For the rest of

the proof, we only consider the Step 1 of ASD.

Let us first assume that |τs| = 2. Agent i cannot be seated in Step 1 whenever either

all seats are already taken or there is only one seat left whose adjacent seat is taken by an

agent, say j, of a different gender. If agent j is the last agent in the ordering of his/her

gender, then one seat is left empty. Otherwise, it is taken as well, implying that no seat

is left unassigned. These imply that ASD’s outcome, if not maximal, assigns one seat less

than a maximal matching.

Let us now consider |τs| = 3. Agent i cannot be seated in Step 1 only when there is no

seat left in his/her turn, or there is an empty seat in a row, but its adjacent seat is already

taken by an agent of a different gender. We now claim that there cannot be more than one

empty seat at the Step 1 outcome of ASD. Assume for a contradiction that there are two

empty seats. We have two cases. We may have two non-full rows where one of them contains

two men, and the other one contains two women (all the other rows are full). In this case,

agent i would have received a seat. Otherwise, we may have a row containing two empty

seats. In this case, again agent i would have received a seat. This, in turn, shows that at

most one seat is left empty under ASD, finishing the proof.

Proof of Theorem 3. Consider an arbitrary problem (B,�). Let �′ be an improvement over

� for agent i. Let ASD(B,�′) = µ′ and ASD(B,�) = µ. First, if µi = ∅, then there is

nothing to prove. Let us suppose that µi 6= ∅. Let i be the kth agent in the ordering under

�, that is, i = ik.

By the definition of Step 1 of ASD, it is immediately apparent that µS = µ′S. Then, by

the stability of µ and µ′, it must be that µ Ri1 µ
′ and µ′ Ri1 µ. That is, i1 is indifferent

between µ and µ′. The same is true for all agents until agent ik under �′.

Assume for a contradiction that µ Pik µ
′. Then, µ′ cannot be stable, as µS = µ′S, all the

agents having a higher priority than ik under �′ are indifferent between µ and µ′, and agent

ik prefers µ to µ′. This shows that µ′ Ri µ, finishing the proof.
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Proof of Proposition 6. An agent is unassigned under MSD only when no empty seat is

left. This shows that MSD is maximal. In the proof of Proposition 2, we show the lack

of stability, efficiency, and strategy-proofness of MSD in problems where all the agents are

male. Therefore, the same examples show that MSD is not stable, efficient, or strategy-proof

in the unrestricted case as well.
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