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Abstract

We propose a parsimonious semi-parametric model to uncover the nonlinear rela-
tionship between Chinese money growth and inflation, suggesting that the long-run
nexus between these variables is significant only when money growth rates are high.
We investigate if a model based solely on prices may explain inflation dynamics bet-
ter in an era where money growth rates are lower and more stable. We further exam-
ine whether two unobserved components (UC) models by Stock and Watson (2016)
are a good fit for China. We estimate these models with monthly CPI data during
the December 2006-February 2023 period to dissect the persistent and non-persistent
components of inflation. Then we run a forecasting competition among UC models,
and other strong competitors from the literature, including the Bayesian vector au-
toregression models (BVAR) and time series models for the January 2015-February
2023 period. We find the multi-sector UC model provides successful forecasts across
various horizons from 1- to 30-months ahead.
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1 Introduction

In 2009, the People’s Bank of China began implementing an expansionary monetary pol-
icy to bolster the weak Chinese economy following the global financial crisis. Conse-
quently, the money supply in China, measured by M2, surpassed that of the US and the
Euro area in 2014. The year-on-year growth rate in the money supply from February
2009 to May 2010 was between 20% and 30%, and the inflation rate, measured by the
consumer price index (CPI), kept climbing, following the money supply growth rate (See
Figure 1). In 2011, inflation peaked at around 8%. This is why the Chinese money supply
is commonly thought to be closely related to Chinese inflation. Some research, based on
forecasting evaluations during this period of time, found the Chinese money growth rate
to be a key variable for forecasting inflation (e.g., Higgins et al. (2016)).

Figure 1: Year-on-year growth rate of Chinese M2 and CPI at the monthly frequency. Source:
International Monetary Fund.

However, the link between money supply growth and the inflation rate seemed to
break after 2015. Following the middle of 2015, while the money growth rate began to
decrease, the inflation rate did not follow. In August 2017, the money supply growth rate
slowed to a record low of 8.9 percent and remained low until now, while the inflation rate
peaked in early 2018. In 2020 and 2023, to mitigate the impact of the COVID-19 pandemic
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on the economy, the People’s Bank of China loosened its monetary policy again. The
money supply growth rate rose while the inflation rate remained low.

The first goal of this paper is to revisit the link between Chinese money growth and
inflation using a semi-parametric model. Our results indicate that money growth may
no longer be a good predictor of Chinese inflation. We then formally assess the predic-
tive ability of models with and without money growth. Among these, we consider two
models that have not been evaluated in the Chinese inflation literature before—the uni-
variate and multivariate unobserved components stochastic volatility models with out-
lier adjustment (UCSVO and MUCSVO) of Stock and Watson (2007). Following Stock
and Watson (2007)’s argument for US inflation, our findings confirm that Chinese infla-
tion predictability can be viewed as a measurement problem rather than forecasting—i.e.
price data alone can be more helpful for its predictions than other macroeconomic vari-
ables, including money growth.

A large body of literature has documented several challenges and puzzles in inflation
predictability, focusing primarily on the US and other OECD countries. A common puz-
zle is related to the poor performance of economic models encompassing macroeconomic
variables: they outperform naive models, i.e., models based on past inflation, only oc-
casionally. This includes a wide range of models such as the Phillips curve or dynamic
stochastic general equilibrium models (See, e.g., Atkeson and Ohanian (2001), Stock and
Watson (2007), Kabukçuoğlu and Martínez-García (2018), Edge and Gürkaynak (2011)).

As a strong alternative to existing models, Stock and Watson (2007) suggest that a
univariate inflation model, an unobserved component trend-cycle model with stochastic
volatility, may provide a good fit for US inflation.1 This is equivalent to solving a signal
extraction problem, where persistent variations in inflation need to be differentiated from
those that are transitory. Mandalinci (2017) evaluates the predictive performance of var-
ious inflation models, including the univariate UCSV model, for nine emerging market
economies (excluding China). Mandalinci (2017) finds models with stochastic volatility
and time-varying parameters yield generally more accurate forecasts relative to an au-
toregressive (AR) benchmark. An extensive study of 14 EMEs including China by Dun-
can and Martínez-García (2019), find that a simple 4-quarter average of inflation in the
spirit of Atkeson and Ohanian (2001) generally outperforms a rich set of models, includ-
ing the Phillips curve models, BVARs, factor models, and standard time series models,
some of which have proved successful in the context of the advanced country forecasting
literature. However, they exclude UC models from their analysis. Our findings suggest

1While outside the scope of our paper, Faust and Wright (2013) document that judgemental forecasts
perform remarkably well compared to several recently developed methods, including the UCSV model.
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that the multivariate model of Stock and Watson (2007) provides superior performance,
especially over shorter horizons.

Our initial assessment with the semi-parametric AR model helps uncover the nonlin-
ear relationship between inflation and money growth. It shows that money growth has a
sizeable effect on inflation when its level is high. This explains why most of the existing
literature agrees that Chinese money growth is important for forecasting inflation. How-
ever, the money growth rate gained a lower and more stable path after 2015 and, as such,
may have lost its forecasting ability afterwards.

We then turn to two unobserved component models that rely solely on price data,
following Stock and Watson (2016). These models of core and trend inflation combine
time series and cross-sectional smoothing techniques, and—to our knowledge—have not
been used in the Chinese inflation forecasting literature.

We also evaluate the information content of money growth for inflation in a bivariate
Bayesian Vector Autoregression (BVAR), which includes money growth and inflation, and
a broader 7-variable BVAR model that includes key macroeconomic variables and money
growth, in line with Higgins et al. (2016). In turn, we show that the link between M2 and
inflation is not robust after 2015 and that the M2 growth rate may not be an efficient tool
to forecast inflation.

In each forecasting exercise, we evaluate the performance of these models relative to
the (driftless) random walk model of inflation, following Atkeson and Ohanian (2001).
We conduct a similar evaluation for various simpler models, such as autoregressive mod-
els and the 12-month moving average relative to the random walk. Finally, we also con-
sider a direct comparison between the forecast performance of BVARs and unobserved
component models.

We summarize our contributions to the literature as follows. First, this paper provides
the first use of the UCSV model, which has been proven useful in inflation forecasting
since it combines two important technical methods (i.e., the UC method and stochastic
volatility), to forecast Chinese inflation. Second, a one-sided seasonal adjustment method,
as opposed to two-sided (see, e.g., He (2012)), is used to remove seasonal effects. As Rossi
(2013) notes, a two-sided seasonal adjustment method may lead to the use of data that are
not available to the econometrician at the time of the forecast, and a one-sided alternative
should be preferred. Third, the semi-parametric method, which can be viewed as a rel-
atively rare macroeconomic application, is used to uncover the nonlinear relationship
between inflation and money growth. High money growth is accompanied by a high in-
flation rate, while low growth in the money supply has little effect on inflation. Fourth,
we find that disaggregated Chinese inflation data is important for forecasting Chinese in-
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flation. Fifth, while BVARs are an important policy tool for central banks and forecasting
research, this paper provides a better forecasting tool for Chinese inflation.

Turning to the methodology and findings in the Chinese inflation literature, a com-
monly used model is the BVAR. Higgins et al. (2016) use a BVAR model with the Sims-
Zha prior as their benchmark model. The model includes macroeconomic measures such
as GDP growth, CPI inflation, M2 growth, and interest rates. Their forecasting result
showed that the benchmark model and the BVAR model with the prior from Giannone
et al. (2015) (GLP’s prior) are competitive with other models (i.e., a random walk and
univariate autoregression models), based on the root mean square error criterion. They
also find that money supply (M2) growth is a key variable for forecasting macroeconomic
variables. This conclusion is consistent with the empirical literature, which studies the
relationship between the M2 growth rate and inflation (e.g. Su et al. (2016), He (2012),
Sun and Ma (2004)). A similar paper from Amstad et al. (2014) developed an underly-
ing inflation gauge (UIG) based on a broad dataset with 472 time series. They use the
generalized factor model of Forni et al. (2000) to produce an inflation gauge that sepa-
rates trend inflation from gap inflation, and found that the UIG for China outperforms
traditional core inflation measures in forecasting headline inflation measured by the CPI.
Although they also use the method of isolating trend values to forecast inflation, this pa-
per differs by only using price data, and the models here include features of stochastic
volatility, which is proven to be important for improving inflation forecasting accuracy
(Cogley and Sargent (2001)). Further, Heaton et al. (2019) find that simple models can
produce a more accurate forecast for the Chinese economy. Their study includes 19 fore-
casting models, ranging from simple models like the moving average to sophisticated
models such as BVAR and factor models. Their results show that sophisticated models
can provide superior 1-month-head forecasts of the producer price index when compared
to simple models, but the evidence is weaker at longer horizons.

In addition, Chinese governmental and academic institutions provide inflation fore-
casts without publishing their model structures.2 As a result, the forecasts by these insti-
tutions or universities are hard to evaluate. With this paper, we aim to provide a detailed
analysis of Chinese inflation and its forecasts and provide an alternative source of infor-
mation.

The rest of the paper is structured as follows. Section 2 explains the nonlinear rela-
tionship between money growth and inflation and why this relationship has led to the

2For example, see the China Annual Macroeconomic Model, developed jointly by the Chinese Academy
of Social Science and the National Bureau of Statistics of China, and China’s Quarterly Macroeconomic
Model, developed by Xiamen University.
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models from Stock and Watson (2016). Section 3 reviews two UC models from Stock and
Watson (2016). Section 4 describes the Chinese inflation data used. Section 5 discusses
the estimation results. Section 6 compares the forecast results from the different models.
Finally, Section 7 concludes.

2 The nonlinear relationship between money growth and
inflation

The quantity theory of money posits a one-for-one relationship between money growth
and inflation. It has been a guiding principle for central banks in their efforts to keep
inflation low. At the same time, money growth appears to have become less central in
monetary policy discussions and standard monetary theory (Woodford, 2008), as more
attention has been paid to other macroeconomic variables for price stability.

The theory, however, has not completely been dismissed. Some economists highlight
a potential nonlinear relationship between money growth and inflation. For instance,
Cecchetti et al. (2017) state that "... economists all agree that extreme rates of inflation are
always accompanied by high rates of money growth. It does not follow, however, that
when inflation is low and stable, changes in money growth are central to understand-
ing movements in inflation." Hence, the empirical evidence for the link between money
growth and inflation (or its lack, thereof) may be better detected in a nonlinear frame-
work.3

To explore this nonlinear relationship for the Chinese economy, we consider a semi-
parametric autoregressive model. Similar methods are used, for example, by Bachmeier
et al. (2007).4 As also indicated by Bachmeier et al. (2007), this method is prone to the
curse of dimensionality. Hence, it is usually more easily applicable to parsimonious spec-
ifications rather than large models.

The model is specified by:

g(µ) = β0 + sp1(πt−s) + sp2(πt−s−1) + sp3(∆mt−s) + sp4(∆mt−s−1)

where g(µ) is the conditional expectation of inflation and g(·) is a monotonic link func-
tion. πt is the (monthly) inflation rate at month t and ∆mt is the (monthly) money growth
rate at month t. sp(·) represents the smoothing functions of the independent variables.

3In the standard New Keynesian framework, the quantity of money is even redundant as equilibrium
output and inflation can be determined under an interest rate rule (Leeper and Roush, 2003).

4Their paper finds only a marginal improvement in inflation forecasts by the nonparametric model.
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The lag length is given by s = 1, 6, 12 months. The error term follows a Gaussian distribu-
tion.5

The main data source for this exercise is China’s Macroeconomy: Time Series Data
from the Federal Reserve Bank of Atlanta, with the sample period from 1990 to 2018.6

The money growth rate is based on the M2 measure from the Federal Reserve Bank of
Atlanta. Figures A4-A6 show the results for lag lengths s = 1, 6, 12, respectively, with
the marginal effects and the 95% confidence intervals from the semi-parametric model
estimates.

Accordingly, the results are strongly in support of a nonlinear relationship between
money growth and inflation. In Figure A4, inflation is explained mainly by its value
from the previous month, presenting a strong short-term impact from inflation today
to inflation a month later. In Figures A5-A6, the marginal response of inflation 12 or
24 months later from an increase in local money growth today is quite small when the
growth rate is low, while the response is more drastic when the money growth rate is
larger than 30%. The long(er) term response of inflation to its current values is relatively
small when the current inflation rate is high. This implies that for long(er)-run inflation
forecasting, the money growth rate can have important information content for inflation
when it is high, while it may not be useful when its value is low.7

This result motivates us to consider a model using only price data for inflation fore-
casts when the Chinese money growth rate is relatively low, and it gains importance to
follow the approach of Stock and Watson (2016). As Figure A1 in the Appendix shows,
the monthly Chinese money growth was relatively high from 2010 to 2015, but it mostly
remained below 30% during that period. We nevertheless consider models with money
growth, following Higgins et al. (2016), to formally assess this claim.8

5The method for estimating this semi-parametric model and constructing the thin-plate regression
splines is explained in Wood (2006). The mgcv package in R was used to estimate the model.

6See https://www.atlantafed.org/cqer/research/china-macroeconomy for the data and Higgins and
Zha (2015) for further details on the data.

7Alternatively, we consider a global liquidity measure, following D’Agostino and Surico (2009) and Dur
and Martínez-García (2020) that find global liquidity helps predict US inflation dynamics. For China, we
construct a similar global liquidity measure as the average of the M2 growth rates for China and its five
largest trading partners: the US, the Euro Area, Japan, South Korea, and Hong Kong. However, we did not
detect (hence, did not report) a statistically significant relationship between Chinese inflation and global
liquidity, even in the long run.

8We exclude the nonparametric approach from our analysis in the forecast exercises, since, as shown
by Bachmeier et al. (2007) among others, this approach does not appear to yield a superior forecasting
performance.
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3 Unobserved Components Stochastic Volatility Models with
Outlier Adjustment

In order to forecast Chinese inflation, we adopt two unobserved components stochas-
tic volatility models with outlier adjustments studied in Stock and Watson (2016) for
US inflation. The first model is a univariate model (UCSVO) that extracts measures of
trend inflation via time series smoothing methods. The second model is a multivariate
model (MUCSVO) proposed by Del Negro and Otrok (2008) that combines two distinct
approaches to measure trend inflation. In particular, it utilizes disaggregated data at the
sectoral level and time series smoothing methods.

3.1 The Univariate Model (UCSVO)

Consider the following univariate model from Stock and Watson (2016):

πt = τt + ϵt (1)

τt = τt−1 + σ∆τ,t × ητ,t (2)

ϵt = σϵ,t × st × ηϵ,t (3)

∆ ln(σ2
ϵ,t) = γϵνϵ,t (4)

∆ ln(σ2
∆τ,t) = γ∆τν∆τ,t (5)

where the variance-covariance matrix (ηϵ, ητ, νϵ, ν∆τ) ∼ N(0, I4), i.i.d.
This model expresses the inflation rate πt as the sum of trend inflation τt (a permanent

component) and gap inflation ϵt (a transitory component), which is specified by equation
(1). Trend inflation τt follows a random walk according to equation (2), gap inflation ϵt is
a serially uncorrelated process as specified by equation (3) and is modeled as a mixture of
normals via the i.i.d. variable st, which is distributed st = 1 with probability (1 − p) and
st ∼ U[2, 10] with probability p. Innovations to both trend inflation and gap inflation,
which are ητ,t and ηϵ,t, respectively, follow logarithmic random walk stochastic volatility
processes, equations (4) and (5). Scale parameters γϵ and γ∆τ control the scale of the
innovation in equations (1) and (2).

3.2 The Multivariate Model (MUCSVO)

This multivariate model extends the UCSVO to include a common latent factor in trend
and gap inflation. Remaining dynamics are captured by sector-specific components. The
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MUCSVO model consists of:

πi,t = αi,τ,tτc,t + αi,ϵ,tϵc,t + τi,t + ϵi,t (6)

τc,t = τc,t−1 + σ∆τ,c,t × ητ,c,t (7)

ϵc,t = σϵ,c,t × sc,t × ηϵ,c,t (8)

τi,t = τi,t−1 + σ∆τ,i,t × ητ,i,t (9)

ϵi,t = σϵ,i,t × si,t × ηϵ,i,t (10)

αi,τ,t = αi,τ,t−1 + λi,τζi,τ,t (11)

αi,ϵ,t = αi,ϵ,t−1 + λi,ϵζi,ϵ,t (12)

∆ ln(σ2
ϵ,c,t) = γϵ,cνϵ,c,t (13)

∆ ln(σ2
∆τ,c,t) = γ∆τ,cν∆τ,c,t (14)

∆ ln(σ2
ϵ,i,t) = γϵ,iνϵ,i,t (15)

∆ ln(σ2
∆τ,i,t) = γ∆τ,iν∆τ,i,t (16)

where (ητ,c,t, ητ,i,t, ηϵ,c,t, ηϵ,i,t, ζi,τ,t, ζi,ϵ,t, ν∆τ,c,t, ν∆τ,i,t, νϵ,i,t, νϵ,c,t) are i.i.d standard normal.
Equation (6) decomposes sector i inflation into a latent common factor for trend infla-

tion τc,t, a latent common transient component ϵc,t, and sector-specific trends and tran-
sient components, τi,t and ϵi,t. Specified by equations (11) and (12), the factor loadings
on the common trend and transient components, αi,τ,t and αi,ϵ,t, evolve as random walks.
Specified by equations (7) to (10), stochastic volatility is allowed for in the latent common
and sector-specific components. The stochastic volatility processes evolve according to a
logarithmic random walk from equations (13) to (16). The model allows for outliers in
the transitory disturbances of the common and sectoral transitory components, which are
accounted for through the random variables sc,t and si,t in equations (8) and (10), where
outlier probabilities are pc and pi. The measure of aggregate trend can be calculated by
the sum of sectoral trends, weighted by the expenditure share weight wit of sector i in
total inflation:

τt =
n

∑
i=1

wit(αi,τ,tτc,t + τi,t) (17)

where n denotes the number of sectors, i = 1, . . . , n.
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4 Data

The data set consists of monthly inflation data from 2006M12 to 2023M2 from the National
Bureau of Statistics of China (NBS). Inflation is measured using annualized, monthly
changes in the headline CPI given by: πt = 1200 × ln( CPIt

CPIt−1
).

The disaggregated components of headline CPI are listed in Table 1. The eight compo-
nents are food, tobacco and liquor, clothing, household facilities, health care, transporta-
tion and communication; recreation, education, and culture; and residence.9

The Chinese disaggregated inflation data have several distinct features. First, the food
sector includes food services (e.g., restaurants), which are part of the core inflation, and
grocery purchases, which are excluded from core inflation. The category of residence
includes gas and electric utilities, which are not under core inflation. The NBS also com-
putes the residence components as the imputed cost of housing, because the residence
price index is affected by mortgage rates and property management fees.10

Next, the expenditure share weights of CPI, wit, are needed to estimate the MUCSVO
model. The NBS has changed the weights every five years since 2006, as presented in
Table 2. In 2016, the NBS combined the food and tobacco sectors into one sector, food and
tobacco, and stopped providing separate data. As a result, we also combine these two
sectors’ time series into one using their expenditure share weights. In our forecasts based
on the MUCSVO model, we take into account the changes in CPI share weights in the
data.

The seasonally adjusted aggregated and disaggregated inflation rates are plotted in
the Appendix (Figure A3) (X-13ARIMA-SEATS software from the US Census Bureau was
used to seasonally adjust raw data and to develop an algorithm to provide the seasonal-
adjusted observations from future information. Details about seasonal adjustment can
be found in the Appendix.) A quick glance reveals that the dynamics of each series are
distinct. The volatility of the food and tobacco component is similar to the volatility of
aggregate inflation. A simple explanation can be that the food and tobacco component
occupies the largest weight and is the most volatile component. The health care and
personal articles component is not volatile in most of the observations, though it saw a
large increase at the end of 2014. The residence component is also not volatile compared
to the other five components. However, one of the largest criticisms of the accuracy of
Chinese inflation rates from the NBS is that the price index of the residence component is

9The description of these eight components is provided in Table 1, which is from the English version of
the NBS website.

10The first two features prevent us from estimating a simpler three-sector MUCSVO model (core inflation,
energy, and food) with Chinese inflation data since we cannot calculate core inflation based on this dataset.
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not reflective of rapidly increasing Chinese housing prices. Although high housing prices
do not directly affect the residence component (the NBS claims they use the standard
93SNA to measure residence prices, which is a common method that means the housing
price should not be accounted for based on this standard), the low-volatility residence
price index prompts speculation.

Table 1: Description of CPI Components

CPI Components Description

1. Food
Food and drink including processed food, semi-finished,
and unprocessed food. Does not include tobacco or
substances used only as drugs.

2. Tobacco, Liquor, and Articles
Tobacco includes high, middle, and low grade cigarettes.
Liquor refers to alcoholic beverages fermented by
sorghum, barley, rice, grapes, or other fruits.

3. Clothing Clothing refers to a variety of wearable goods, including
clothing made by cotton, linen, silk, etc.

4. Household facilities Furniture, bedding, household goods and services
and maintenance services.

5. Health care
Health care includes medical instruments, traditional
Chinese medicine, Western medicine, health care
appliances, articles, and services.

6. Transportation and communication

Transportation includes transportation facilities, fuel and
parts, fees for vehicles use and maintenance, and
traffic fares. Communication includes communication
facilities and communication services.

7. Recreation, education, and culture
Durable consumer goods for cultural and recreational
use and services, education, cultural and recreational
articles, touring and outings.

8. Residence Building and building decoration materials, renting,
private housing, water, electricity and fuels, etc.

Table 2: Weights of CPI Components

Year 2006-2010 2011-2015 2016-2020 2021-2023
Food and Tobacco 0.30 0.30 0.30 0.30
Clothing 0.09 0.09 0.08 0.07
Household facilities, articles, and services 0.06 0.06 0.05 0.05
Health care and personal articles 0.10 0.09 0.10 0.11
Transportation and communication 0.10 0.09 0.10 0.11
Recreation, education, and cultural articles 0.14 0.14 0.14 0.13
Residence 0.13 0.17 0.20 0.22

5 Estimation methodology and results

Our estimation methodology closely follows Stock and Watson (2016), where both the
UCSVO model and the MUCSVO model are estimated using Bayesian methods. While
the key points are highlighted here, a detailed description of the priors and the numerical
methods involved in approximating the posteriors can be found in the work of Stock and
Watson (2016).
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In these models, the goal is to estimate the trend inflation along with the other compo-
nents. For the UCSVO model, priors for the stochastic volatility parameter γϵ and γ∆τ are
independent uniform priors distributed U[0,0.15], which control the scale of the standard
deviations of annual changes in the values of ln(σϵ,t) and ln(σ∆τ,t). We set the value of the
hyperparameter here as 0.15 instead of 0.2 in Stock and Watson (2016) because the latter
will lead to no changes in ln(σϵ,t). The prior for parameter p, which controls the proba-
bility of outliers occurring in each period, is Beta(α, β), where α and β are calibrated to
reflect our belief that an outlier occurs once every 30 months. The priors for the MUCSVO
model follow the priors used in the UCSVO model.

Estimation of the posterior proceeds involves Markov chain Monte Carlo (MCMC)
methods with a burn-in period of 10,000 iterations. Then 50,000 iterations are carried out,
saving one draw per ten, yielding 5,000 draws. These 5,000 draws form the posterior
distributions of the two models Stock and Watson (2016).
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Figure 2: Posterior medians and 68% intervals from the UCSVO model

Figure 2 plots the full-sample posterior means for τt, σ∆τ,t, σϵ,t, and st from the UCSVO
model. Figure 2a plots τt. Trend inflation peaks at around 8% in late 2007 and then
troughs during the global financial crisis. It peaks again in 2011 following the expansion-
ary monetary policy of the People’s Bank of China. It then remains stable from 2012 to
2019. It spikes again during the COVID-19 pandemic. Figure 2b shows estimates of σ∆τ,t.
The stochastic volatility of trend inflation fell during the estimation sample, which reflects
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the trend variation decreasing over time. Figure 2c plots σϵ,t, which generally increases
in the whole trial period but decreases after 2020. Finally, Figure 2d shows estimates of
the outlier scale factors st. This figure shows that the UCSVO model captures the large
fall in Chinese inflation in 2008 because of the global financial crisis, the jump in 2009 that
occurred because of the expansionary monetary policy, and the supply-side revolution in
2017 (when the Chinese government shut down some small private companies to increase
the price of goods and the profit of government-owned companies). In 2020, the outbreak
of the COVID-19 pandemic caused supply chain disruptions and led to a rise in the cost
of living, and therefore, inflation.
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Figure 3: Posterior medians and 68% intervals from the Multivariate UCSVO model

Figure 3 displays the MUCSVO model’s full sample estimates for the aggregate in-
flation trend and the UCSVO estimate. Broadly speaking, the trend component of the
MUCSVO model (Figure 3a) is smoother than that of the UCSVO model. The time series
of volatility for the common trend factor, σ∆τ,c,t, in the MUCSVO model (Figure 3b) is dif-
ferent from that in the UCSVO model. It increases before 2010 and then decreases over the
second half of the sample period. The time series of volatility for the common transient
factor σϵ,c,t is stable (Figure 3c). Its posterior median gently decreases over ten years. The
outlier detected by the MUCSVO model is less than the UCSVO model. Some outliers are
found in sectoral transitory components instead of common transitory components. In
the process of recursive forecasting, the priors for the MUCSVO model is slightly differ-
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ent from those in the UCSVO model. The priors, which control the probability of outliers
occurring in each period, are calibrated to reflect estimation results that an outlier occurs
once every 120 months.

6 Pseudo Out-of-Sample Forecasting Methodology and Re-
sults

In this section, we assess the pseudo out-of-sample predictive ability of the UCSVO model
and the MUCSVO model. The benchmark model for comparison is the driftless random
walk model, which is a commonly used benchmark in the inflation forecasting literature.
We consider other models that have proved useful in the literature as well:
(i) Random walk: πt+h = πt + ut+h

(ii) 12-month moving average (MA): πt+h = 1
12 [πt−1 + πt−2 + ... + πt−12]

(iii) Univariate AR models, with or without trend:
πt+h = α + β0t + ∑L

l=1 βlπt−l + ut+h, where L=1, 6 and β0 = 0 whenever a trend is not
used.
(iv) BVAR models (presented in reduced form because we are interested in forecasting):
y′t+h = c′ + ∑

p
l=1 y′t−lBl + u′

t+h, with p = 2 and yt = (M2t, CPIt, )′ and p = 5 and
yt = (GDPt, Consumptiont, Investmentt, M2t, CPIt, Exportt, Repot)′. The data for real
GDP growth rate, real consumption growth rate, real investment growth rate, M2 growth
rate, inflation rate, net exports (as a percent of GDP), the 7-day repo rate in the national
interbank market, and the one-year benchmark deposit rate are from the China’s Macroe-
conomy: Time Series Data from Federal Reserve Bank of Atlanta database. The 5-variable
BVAR model follows Higgins et al. (2016). Higgins et al. (2016) and Higgins and Zha
(2015) who discuss how they seasonally adjust and interpolate their data, and the prior is
from Giannone et al. (2015)’s paper. They treat priors as additional parameters and use a
hierarchical modeling method to find the best choice. Since we would like to evaluate the
predictive performance of M2 growth alone, we consider a simple bivariate BVAR model
as well.

All forecasts were computed using the pseudo-out-of-sample forecast methodology.
So for a sample that starts in t0 and ends in t1, the estimation sample starts at t0 and ends
in t, with t0 < t < t1 and, the forecasting sample begins in t + h and ends in t1. We
consider a recursive scheme. Hence, we estimate a model using all data up to date t to
forecast inflation at date t + h. We keep adding data to the estimation sample to estimate
the parameters of the model, which continues until period t1 − h.
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Our metric of forecast evaluation is the mean squared forecast error (MSFE):

MSFE =
1
F

F

∑
i=0

(πt+i+h − π̂t+i+h)
2,

where h is the horizon and F is the length of the forecast window, which starts in January
2015 and ends in February 2023.11 A relative MSFE metric for a model and the random
walk that is less than or equal to one, MSFE/MSFERW ≤ 1, which suggests that the
forecast of the model is at least as accurate as that of the random walk, and less accurate
otherwise. We focus on forecasts at the one- to thirty-month horizon.

For a formal forecast evaluation, we consider a one-sided Diebold-Mariano (Diebold
and Mariano, 2002), or DM test, which can be applicable to non-nested models like ours.
The null hypothesis captures a loss function based on the (squared) forecast error differ-
ences from Model 1 and Model 2 (the random walk), testing the null that "the random
walk is better than Model 1". We use the bias correction to the DM test by Harvey et al.
(1997) for small samples, and the resulting statistic is then compared with a standard nor-
mal distribution. Finally, we use this test in the forecast evaluation of other non-nested
model pairs, excluding the random walk, in a subsequent exercise.

Table 3 and Table 4 summarize the forecasting competition results. Five main results
stand out. First, all models produce more accurate forecasts than the random-walk model
based on the relative MSFE metric. Further, the modified Diebold and Mariano (DM) test
results suggest that these results are largely statistically significant. Second, the MUCSVO
model yields a better forecast in every horizon compared with all of the models, except
for the 12-month MA. Although the 12-month MA provides a qualified forecast result
like the one from the MUCSVO model, the MUCSVO model becomes a better choice for
horizons up to three months. When the horizon is longer, the MUCSVO model is as ac-
curate as the MA model. Third, the comparison between the MUCSVO model and the
UCSVO model shows that disaggregated inflation data is important for forecasting Chi-
nese inflation. The MSFE from the MUCSVO model is much lower than that from the
UCSVO model, showing that the information from sectoral inflation is essential. Fourth,
the MUCSVO model and the UCSVO model show better forecast ability than BVAR mod-
els at all horizons. On average, the MUCSVO model has 7% lower MSFE than BVAR
models, which is a significant improvement. Fifth, the bivarate BVAR model has a fore-

11The comparison between UC models and BVAR is based on the forecasting evaluation period from
January 2015 to February 2022 because of missing GDP data. In Table A1 in the Appendix, we provide a
comparison between UC models and other models except for the BVAR in this period of time and report
similar results.
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casting ability comparable to that of the seven-variable BVAR model, which implies that
the information content of key macroeconomic variables other than money growth may
be low.

7 Conclusion

In this paper, we explore different ways to explain and forecast Chinese inflation. In
light of the discussions in the literature, the first question we address is whether money
growth as a key macroeconomic fundamental is a good predictor of Chinese inflation.
Our initial assessment with a parsimonious semiparametric AR model concludes that the
information content of money growth for inflation is confined to the high inflation era of
pre-2015. We then estimate and forecast Chinese inflation using the two UC models from
Stock and Watson (2016), that is, models based solely on price data. We evaluate these
forecasts from different models that have been widely used in the literature, documenting
the superior performance of the UC models.

The multivariate UC model provides the best forecasts for the inflation rate, and both
UC models perform better than the BVAR model and various time series models accord-
ing to the relative MSFE metric. An additional advantage of the UC models is that they
rely only on CPI data, which are published at a monthly frequency, as opposed to models
that rely on macroeconomic fundamentals such as real GDP, consumption or investment,
which are available at a quarterly frequency and thus rely on interpolation to forecast at
the monthly frequency (see, e.g. Higgins et al. (2016)).

This paper presents a thorough analysis of Chinese inflation models for forecasting,
highlighting the predictive performance and practical importance of the UC models. The
literature has yet to explore the performance of these models, especially the multivariate
UC model, for emerging markets where money growth rates have been lower and less
volatile compared to the past. Our work may suggest a future path for inflation modeling
and forecasting in emerging market economies where the Atkeson and Ohanian (2001)
inflation puzzle is ubiquitous, i.e., inflation has become less responsive to macroeconomic
factors and can be better predicted with models using exclusively price data.
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Table 3: Pseudo-Out-of-Sample Forecasting Performance for CPI Inflation: MSFE Relative to the Random Walk

Horizon MUCSVO UCSVO 12-month MA AR(1) without trend AR(6) without trend AR(1) with trend AR(6) with trend
h=1 0.61** 0.68** 0.69* 0.62*** 0.66** 0.98 0.69**

(0.01) (0.04) (0.05) (0.01) (0.03) (0.85) (0.03)
h=2 0.45*** 0.49*** 0.47*** 0.44*** 0.47*** 0.85*** 0.51***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
h=3 0.49*** 0.53*** 0.53*** 0.51*** 0.55*** 0.81* 0.57***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.09) (0.00)
h=6 0.61*** 0.63** 0.59** 0.58** 0.58* 0.81 0.66

(0.01) (0.01) (0.02) (0.04) (0.08) (0.73) (0.11)
h=9 0.50*** 0.53*** 0.53** 0.48*** 0.48*** 0.84 0.59***

(0.01) (0.01) (0.01) (0.00) (0.01) (0.12) (0.01)
h=12 0.48*** 0.51*** 0.48*** 0.45** 0.45** 0.88 0.54**

(0.00) (0.00) (0.00) (0.01) (0.01) (0.17) (0.02)
h=15 0.59*** 0.59*** 0.61*** 0.59** 0.59** 0.86 0.65**

(0.00) (0.00) (0.00) (0.02) (0.04) (0.64) (0.04)
h=18 0.51** 0.53** 0.50** 0.47** 0.47** 0.98 0.61**

(0.02) (0.01) (0.01) (0.02) (0.03) (0.13) (0.03)
h=21 0.65*** 0.67*** 0.64*** 0.67 0.67 1.00 0.74

(0.00) (0.00) (0.00) (0.19) (0.28) (0.90) (0.30)
h=24 0.59 0.62 0.58 0.59** 0.59** 1.00 0.71**

(0.27) (0.31) (0.29) (0.03) (0.04) (0.35) (0.03)
h=27 0.54** 0.57** 0.53* 0.55* 0.55 0.95 0.59

(0.05) (0.05) (0.06) (0.09) (0.15) (0.50) (0.15)
h=30 0.69 0.75 0.74 0.76 0.75 0.94 0.74

(0.29) (0.24) (0.22) (0.14) (0.21) (0.86) (0.29)

Notes: This table reports the relative MSFE of h-month-ahead pseudo out-of-sample forecasts of inflation between the pairs of models indicated in
each column. *, **, *** denote that the MSFE of the former model is significantly different from the latter at 10, 5, and 1 percent significance levels,
respectively. P-values are reported in parentheses. These results are based on the modified version of the one-sided DM test from Harvey et al.
(1997), which corrects for the size property of the original test statistic in a small sample. The out-of-sample forecasting period is from January 2015
to February 2023 for various monthly horizons from h = 1, 2, ..., 30.
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Table 4: Pseudo-Out-of-Sample Forecasting Performance for CPI Inflation: MSFE Relative to Alternative Benchmark
Models: Moving Average (MA), Bivariate BVAR (2-BVAR) and 7-variable BVAR (7-BVAR) (From January 2015 to February

2022)

Horizon MUCSVO vs. 12-month MA UCSVO vs. 12-month MA MUCSVO vs. 2-BVAR UCSVO vs. 2-BVAR MUCSVO vs. 7-BVAR UCSVO vs. 7-BVAR
h=1 0.90 1.00 0.91 1.02 0.89 1.00

(0.20) (0.59) (0.20) (0.64) (0.30) (0.99)
h=2 0.96 1.04 0.96 1.04 1.00 1.08

(0.42) (0.65) (0.73) (0.49) (0.93) (0.64)
h=3 0.93 1.00 0.93 1.00 0.80** 0.86

(0.68) (0.89) (0.29) (0.83) (0.01) (0.14)
h=6 1.03 1.06 1.03 1.06 0.93 0.95

(0.78) (0.99) (0.69) (0.55) (0.55) (0.67)
h=9 0.95 1.00 1.00 1.05 1.01 1.06

(0.60) (0.78) (0.77) (0.47) (0.70) (0.43)
h=12 1.00 1.06 1.10 1.17 1.03 1.10

(0.69) (0.84) (0.34) (0.15) (0.71) (0.40)
h=15 0.97 0.97 0.99 0.99 0.88 0.88

(0.72) (0.83) (0.87) (0.95) (0.20) (0.14)
h=18 1.01 1.06 1.09 1.15 1.01 1.06

(0.55) (0.68) (0.21) (0.12) (0.86) (0.56)
h=21 1.02 1.05 0.92 1.00 0.86 0.93

(0.88) (1.00) (0.78) (0.47) (0.36) (0.84)
h=24 1.02 1.07 0.99 1.08 0.92 1.00

(0.86) (0.97) (0.88) (0.19) (0.44) (0.91)
h=27 1.02 1.07 1.04 1.07 0.96 0.99

(0.87) (0.99) (0.65) (0.50) (0.86) (0.96)
h=30 0.94 1.01 0.93 0.94 0.87 0.88

(0.64) (0.74) (0.50) (0.60) (0.35) (0.41)

Notes: This table reports the relative MSFE of h-month-ahead pseudo out-of-sample forecasts of inflation between the pairs of models indicated in
each column. *, **, *** denote that the MSFE of the former model is significantly different from the latter at 10, 5, and 1 percent significance levels,
respectively. P-values are reported in parentheses. These results are based on the modified version of the one-sided DM test from Harvey et al.
(1997), which corrects for the size property of the original test statistic in a small sample. The out-of-sample forecasting period is from January 2015
to February 2023 for various monthly horizons from h = 1, 2, ..., 30.
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8 Appendix

8.1 Figures and Tables

Figure A1: Month-on-month growth rate of Chinese M2 (seasonally adjusted).
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Figure A4: Semi-parametric AR model marginal effects M2 growth and s=1

Notes: This figure reports the marginal effects and 95% confidence intervals of inflation and M2 growth on inflation 1 and 2 months ahead,

estimated from the semi-parametric AR model described in Section 2.
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Figure A5: Semi-parametric AR model marginal effects: Local liquidity and s=12

Notes: This figure reports the marginal effects and 95% confidence intervals of inflation and M2 growth on inflation 12 and 13 months ahead,

estimated from the semi-parametric AR model described in Section 2.
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Figure A6: Semi-parametric AR model marginal effects: Local liquidity and s=24

Notes: This figure reports the marginal effects and 95% confidence intervals of inflation and M2 growth on inflation 24 and 25 months ahead,

estimated from the semi-parametric AR model described in Section 2.
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Table A1: Forecast performance relative to the random walk for the January 2015-February 2022 period

Horizon MUCSVO UCSVO 12-month mov. avg. AR(1) without trend AR(6) without trend AR(1) with trend AR(6) with trend
h=1 0.61** 0.68* 0.68* 0.63 0.67 1.01 0.70
h=2 0.44*** 0.48*** 0.45*** 0.44*** 0.47*** 0.88*** 0.51***
h=3 0.48*** 0.52*** 0.52*** 0.51*** 0.56*** 0.85* 0.59***
h=6 0.62** 0.63** 0.59** 0.60*** 0.59*** 0.82 0.67***
h=9 0.52** 0.54** 0.53** 0.51*** 0.51*** 0.84* 0.62***
h=12 0.47*** 0.49*** 0.45*** 0.43*** 0.44*** 0.88*** 0.55***
h=15 0.59*** 0.58*** 0.58*** 0.59*** 0.58*** 0.83 0.65***
h=18 0.52** 0.55*** 0.52** 0.48* 0.49* 1.06 0.65*
h=21 0.67*** 0.73*** 0.70*** 0.70 0.70 1.01 0.79
h=24 0.78 0.85 0.81 0.79** 0.79*** 1.30 0.96**
h=27 0.65** 0.67*** 0.62** 0.63* 0.63 0.98 0.70*
h=30 0.86 0.87 0.84 0.92 0.92 0.89 0.86

Notes: This table reports the relative MSFE of h-month-ahead pseudo out-of-sample forecasts of inflation between the pairs of models
indicated in each column. *, **, *** denote that the MSFE of the former model is significantly different from the latter at 10, 5, and 1
percent significance levels, respectively. These results are based on the modified version of the one-sided DM test from Harvey et al.
(1997), which corrects for the size property of the original test statistic in a small sample. The out-of-sample forecasting period is from
January 2015 to February 2022 for various monthly horizons from h = 1, 2, ..., 30.
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8.2 Seasonal adjustment

To perform seasonal adjustment, we convert growth series into levels with an initial value
set at 1, and use X-13ARIMA-SEATS. The algorithm for this can be found in Caporello
et al. (2004). One of the most critical problems for Chinese inflation data is the effect of
the Chinese New Year, also called the Spring Festival. It can fall in January or February
or across both. The X-13-ARIMA-SEATS program provides methods to deal with this
problem Lin and Liu (2002). By doing this, the inflation time series in this paper becomes
similar to that in Higgins et al. (2016). Using a two-sided filter may result in spurious
forecasts. To improve forecasting results, we use the concurrent seasonal adjustment of
observations. The concurrent seasonal adjustment of the observation at time t in the X-
13ARIMA-SEATS reference manual is defined as the seasonal adjustment of the original
data using only the sample before time t. The X-13ARIMA-SEATS only provides part of
concurrent observations. We developed an algorithm to gain all of them. The steps are
as follows: First, seasonally adjust the first fifty observations. Then, seasonally adjust the
first fifty-one observations to obtain the fifty-first seasonally-adjusted observation and
accompany it with other fifty seasonally-adjusted observations. This loop continues until
we seasonally adjust all of the raw observations. From Figure A2, compares the inflation
series from one-sided and two-sided seasonal adjustment. The differences appear to be
prominent on occasion.

8.3 Estimation results for the multivariate UCSVO model
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Figure A7: Posterior medians and 68% intervals from the Multivariate UCSVO model: food and tobacco sector
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Figure A8: Posterior medians and 68% intervals from the Multivariate UCSVO model: clothing sector
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Figure A9: Posterior medians and 68% intervals from the Multivariate UCSVO model: residence sector
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Figure A10: Posterior medians and 68% intervals from the Multivariate UCSVO model: household facilities sector
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Figure A11: Posterior medians and 68% intervals from the Multivariate UCSVO model: health care sector
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Figure A12: Posterior medians and 68% intervals from the Multivariate UCSVO model: transportation and communication
sector
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Figure A13: Posterior medians and 68% intervals from the Multivariate UCSVO model: recreation, education and culture
sector

35


	Introduction
	The nonlinear relationship between money growth and inflation
	Unobserved Components Stochastic Volatility Models with Outlier Adjustment
	The Univariate Model (UCSVO)
	The Multivariate Model (MUCSVO)

	Data
	Estimation methodology and results
	Pseudo Out-of-Sample Forecasting Methodology and Results
	Conclusion
	Appendix
	Figures and Tables
	Seasonal adjustment
	Estimation results for the multivariate UCSVO model


